Решите уравнение 2sin 2x sin2x sinx cosx 0 3pi 2

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Математика а) Решите уравнение √2 Sin(x-3П/2)Cos(3П/2+x) +Cosx =0 б) Найдите все корниСкачать

Математика а) Решите уравнение √2 Sin(x-3П/2)Cos(3П/2+x) +Cosx =0 б) Найдите все корни

Калькулятор онлайн.
Решение тригонометрических уравнений.

Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое уравнение
Решить уравнение

Видео:Тригонометрические уравнения sin2x=√2/2; cos x/3=-1/2Скачать

Тригонометрические уравнения sin2x=√2/2;  cos x/3=-1/2

Немного теории.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Тригонометрические уравнения

Видео:Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синусСкачать

Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синус

Уравнение cos(х) = а

Из определения косинуса следует, что ( -1 leqslant cos alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.

Уравнение cos x = а, где ( |a| leqslant 1 ), имеет на отрезке ( 0 leqslant x leqslant pi ) только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если a

Видео:(sin2x+2sin^2 x)/√(-cosx)=0 Задание 13 Профильный ЕГЭ по математике Исследование ОДЗСкачать

(sin2x+2sin^2 x)/√(-cosx)=0 Задание 13 Профильный ЕГЭ по математике  Исследование ОДЗ

Уравнение sin(х) = а

Из определения синуса следует, что ( -1 leqslant sin alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.

Уравнение sin х = а, где ( |a| leqslant 1 ), на отрезке ( left[ -frac; ; frac right] ) имеет только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если а

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Уравнение tg(х) = а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале ( left( -frac; ; frac right) ) только один корень. Если ( |a| geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right) ); если а

Видео:Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решенияСкачать

Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решения

Решение тригонометрических уравнений

Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Видео:простейшие уравнения с sinx: 1)sinx=√2/2; 2)sinx=-√3/2Скачать

простейшие уравнения с sinx: 1)sinx=√2/2;  2)sinx=-√3/2

Уравнения, сводящиеся к квадратным

Решить уравнение 2 cos 2 (х) — 5 sin(х) + 1 = 0

Заменяя cos 2 (х) на 1 — sin 2 (х), получаем
2 (1 — sin 2 (х)) — 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) — 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y — 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = — 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; ( x = (-1)^n text(0,5) + pi n = (-1)^n frac + pi n, ; n in mathbb )
Ответ ( x = (-1)^n frac + pi n, ; n in mathbb )

Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) — 4 = 0

Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 — sin 2 (6х)) + 4 sin(6х) — 4 = 0 => 3 sin 2 (6х) — 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 — 4y +1 =0, откуда y1 = 1, y2 = 1/3

Видео:4 способа решить уравнение sinx = cosxСкачать

4 способа решить уравнение sinx = cosx

Уравнение вида a sin(x) + b cos(x) = c

Решить уравнение 2 sin(x) + cos(x) — 2 = 0

Используя формулы ( sin(x) = 2sinfrac cosfrac, ; cos(x) = cos^2 frac -sin^2 frac ) и записывая правую часть уравпения в виде ( 2 = 2 cdot 1 = 2 left( sin^2 frac + cos^2 frac right) ) получаем

Поделив это уравнение на ( cos^2 frac ) получим равносильное уравнение ( 3 text^2frac — 4 textfrac +1 = 0 )
Обозначая ( textfrac = y ) получаем уравнение 3y 2 — 4y + 1 = 0, откуда y1=1, y1= 1/3

В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях ( a neq 0, ; b neq 0, ; c neq 0, ; c^2 leqslant b^2+c^2 ) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на ( sqrt ):

Решить уравнение 4 sin(x) + 3 cos(x) = 5

Здесь a = 4, b = 3, ( sqrt = 5 ). Поделим обе части уравнения на 5:

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Решить уравнение sin(2х) — sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) — sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x — 1) = 0

Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х — х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0

Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) — sin 2 (x), то
cos(2x) = 1 — sin 2 (x) — sin 2 (x), cos(2x) = 1 — 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 — cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 — cos(2x)) + 2 (1 — cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0

Видео:Математика Дано уравнение (1+2(Sinx)^2 -(3^0.5)Sin2x)/(2Sinx-1)=0 А) Решите уравнение.Скачать

Математика Дано уравнение (1+2(Sinx)^2 -(3^0.5)Sin2x)/(2Sinx-1)=0  А) Решите уравнение.

Решение задачи 13. Вариант 345

а) Решите уравнение ​ ( 2sin^2x+sinx*cosx+sqrt(sin2x+cos^2x)=0 ) ​

б) Укажите корни этого уравнения, принадлежащие отрезку [​ ( frac;frac ) ​]

Это стандартное однородное уравнение. Мы его решаем так:

Делим все уравнение на ​ ( cos^2x neq0 ) ​

​ ( 2tg^2x+(2sqrt+1)tgx+sqrt=0 ) ​. Делая замену ​ ( tgx=t ) ​ решаем квадратное уравнение

Б) Легко можно отобрать на тригонометрической окружности

Решите уравнение 2sin 2x sin2x sinx cosx 0 3pi 2

Ответ: а) ​ ( x=-frac+pi n ) ​,​ ( x=-arctan(0.5)+pi n ) б) ​ ( x=pi-arctg0.5,frac ) ​

Видео:Integrate Sin2x/sin^4x+cos^4xСкачать

Integrate Sin2x/sin^4x+cos^4x

Задача 52849 2sin^2(Pi/2-x)+sin2x = 0, [3Pi; 9Pi/2].

Условие

Решите уравнение 2sin 2x sin2x sinx cosx 0 3pi 2

2sin^2(Pi/2-x)+sin2x = 0, [3Pi; 9Pi/2]

Решение

Решите уравнение 2sin 2x sin2x sinx cosx 0 3pi 2

По формулам приведения:
sin(π/2–x)=cosx

Уравнение принимает вид:

Так как sin2x=2sinx*cosx, то

Произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0:

cosx=0 или cosx+sinx=0

[b]x=(π/2)+πn, n ∈ Z[/b] или sinx=-cosx; tgx=-1 ⇒[b] x=-(π/4)+πk, k ∈ Z[/b]

a) [b](π/2)+πn, n ∈ Z[/b] ; [b] x=-(π/4)+πk, k ∈ Z[/b]

б) x=7π/2; x=9π/2; x=-(π/4)+4π=15π/4- корни,
принадлежащие отрезку [3π; 9π/2] Решите уравнение 2sin 2x sin2x sinx cosx 0 3pi 2

Здравствуйте, а почему мы берем ответ с cosx=0,у нас же он при решении уравнения cosx+sinx=0 (дальнейшем делении на cosx) получается, что cosx=/0(т.к. он в знаменателе tgx). Тогда почему мы записываем в ответ корни от решениях уравнения cosx=0(он же должен быть посторонним)?

Нет. Либо косинус равен 0, либо sinx+cosx=0 Решаем второе уравнение: sinx+cosx=0; если cosx=0, тогда sinx+0=0 и sinx=0. Но синус и косинус одновременно не могут равняться нулю. Поэтому и делим второе на косинус, или если не нравится, делите на синус, который отличен от нуля и получите тот же ответ ctgx=-1 ⇒ x=–(π/4)+πk, k ∈ Z

📽️ Видео

Три способа отбора корней в задании 13 ЕГЭ профильСкачать

Три способа отбора корней в задании 13 ЕГЭ профиль

Решение уравнения a*sin^2(x)+b*sin(x)*cos(x)+c*cos^2(x)=0Скачать

Решение уравнения a*sin^2(x)+b*sin(x)*cos(x)+c*cos^2(x)=0

Математика а) Решите уравнение |Cosx+Sinx|=√2 Sin2x. б) Найдите решение уравнения, принадлежащиеСкачать

Математика а) Решите уравнение |Cosx+Sinx|=√2 Sin2x. б) Найдите решение уравнения, принадлежащие

10 класс, 16 урок, Функции y=sinx, y=cosx, их свойства и графикиСкачать

10 класс, 16 урок, Функции y=sinx, y=cosx, их свойства и графики

Отбор корней с аркфункциями в №12 | Это будет на ЕГЭ 2023 по математикеСкачать

Отбор корней с аркфункциями в №12 | Это будет на ЕГЭ 2023 по математике

Математика а) Решите уравнение 2Sin^2 (3П/2+x)=(3^(1/2)) Cosx б) Найдите все корни этого уравненияСкачать

Математика а) Решите уравнение 2Sin^2 (3П/2+x)=(3^(1/2)) Cosx б) Найдите все корни этого уравнения

Урок 4 Решение тригонометрических уравнений . ЕГЭ 2 часть. Формулы приведенияСкачать

Урок 4  Решение тригонометрических уравнений . ЕГЭ 2 часть. Формулы приведения

Let `f(x)=|(cos^2x,sin2x,-sinx),(sin2x,2sin^2 x,cosx),(sinx,-cosx,0)|` thanСкачать

Let  `f(x)=|(cos^2x,sin2x,-sinx),(sin2x,2sin^2 x,cosx),(sinx,-cosx,0)|`  than
Поделиться или сохранить к себе: