Решите уравнение 2cos2x 5sinx 1 0 укажите корни принадлежащие отрезку п а 2п

Решите уравнение 2cos2x 5sinx 1 0 укажите корни принадлежащие отрезку п а 2п

Вопрос по алгебре:

Ответы и объяснения 2

не удовлетворяет смыслу

А)
Пусть, sinx=t (-1≤x≤1), тогда, у.п.в.:

Значит,
б) Найдем корни, принадлежащие промежутку (π;3π2) путем решения двойных неравенств:
1)
Целых решений нет.
2)
При k = 1, х =
Ответ: а)
б)

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Задание 13. Математика ЕГЭ. Решите уравнение 3cos2x — 5sinx + 1 = 0.

Задание.

а) Решите уравнение 3cos2x — 5sinx + 1 = 0.

б) Укажите корни этого уравнения, принадлежащие отрезку [π; 5π/2].

Решение:

а) Решите уравнение 3cos2x — 5sinx + 1 = 0.

ОДЗ уравнения – все числа.

Преобразуем данное уравнения, воспользуемся формулой двойного аргумента:

cos2x = 1 – 2 sin 2 x

3(1 – 2 sin 2 x) – 5sinx + 1 = 0

3 – 6 sin 2 x – 5sinx + 1 = 0

6 sin 2 x + 5sinx – 4 = 0

Введем новую переменную, пусть sinx = a, тогда

Вернемся к первоначальной переменой, получим 2 уравнения

sinx = — 4/3 и sinx = 1/2

Решим 1 уравнение:

Уравнение не имеет решения, так как — 1 ≤ sinx ≤ 1.

Решим 2 уравнение:

Решите уравнение 2cos2x 5sinx 1 0 укажите корни принадлежащие отрезку п а 2п

б) Найдем корни уравнения, принадлежащие отрезку [π; 5π/2].

Для первого корня:

Решите уравнение 2cos2x 5sinx 1 0 укажите корни принадлежащие отрезку п а 2п

Для второго корня:

Решите уравнение 2cos2x 5sinx 1 0 укажите корни принадлежащие отрезку п а 2п

Решите уравнение 2cos2x 5sinx 1 0 укажите корни принадлежащие отрезку п а 2п

Почему второй корень не подходит? Я не поняла, как вы это определили.

m должно быть целым числом. В промежутке от 1/12 до 10/12 нет целых чисел. Поэтому второй корень не подходит.

Видео:Решить уравнения 2cosx=2 ctgx+1=0 tgx+1=0 sin(x+pi/6)=1 ctgx/3=-1/3 tg2x=-3Скачать

Решить  уравнения 2cosx=2 ctgx+1=0 tgx+1=0 sin(x+pi/6)=1 ctgx/3=-1/3 tg2x=-3

задание 13

О категории

Тригонометрические уравнения, отбор корней.

Теория (1)

Разбор задания 13 профильного ЕГЭ по Математике

Вообще в задании 13 дают не только тригонометрию, так что на видео также рассмотрены и другие.

Практика (101)

a) tg(Pi+x)cos(2x-Pi/2) = cos(-Pi/3)

а) tg(2Pi+x)cos(Pi/2+2x) = cosPi

а) Решите уравнение tg(Pi-x)cos(3Pi/2 — 2x) = sin 5Pi/6

б) Укажите корни этого уравнения, принадлежащие отрезку [-2Pi; -Pi/2]

а) Решить уравнения сos^2x-cos2x=0,75.
б) Отбор корней на отрезке [2Pi;-Pi/2]

cos2x+sin^2x = 3/4, [Pi; 2,5Pi]

sin(Pi/2+x) = sin2x, [-Pi; Pi/2]

cos2x-5sqrt(2)cosx-5 = 0, [-3Pi; -3Pi/2]

2sin(x+Pi/3)+cos2x = sqrt(3)cosx+1, [-3Pi, -3Pi/2]

а) Найдите корень уравнения sqrt(2)sin^2x = sinx

б) Найдите все корни этого уравнения, удовлетворяющие неравенству cosx

a) Найдите корень уравнения 2cos2x-12cosx+7 = 0

б) Отбор корней на промежутку [-Pi; 5Pi/2] (15)

а) 8*16^(sin^2x) — 2*4^(cos2x) = 63

a) (2cosx+1)(sqrt(-sinx)-1) = 0

а) Ре­ши­те урав­не­ние cos2x+0,5=cos^2x.
б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [-2Pi/-Pi/2]

а) Ре­ши­те урав­не­ние sin2x=sin(Pi/2+x)
б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [-7Pi/2; -5Pi/2]

а) Ре­ши­те урав­не­ние 4cos^3x+3sin(x-Pi/2)=0.
б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [-2Pi;-Pi].

а) Ре­ши­те урав­не­ние sin2x=2sinx-cosx+1
б) Ука­жи­те корни урав­не­ния, при­над­ле­жа­щие от­рез­ку [-2Pi;-Pi/2]

а) Ре­ши­те дан­ное урав­не­ние 2cos^2x+2sin2x=3.
б) Ука­жи­те корни дан­но­го урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку [-3Pi/2; -Pi/2]

а) Решите уравнение cos2x=1-cos(Pi/2-x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-5Pi/2;-Pi)

а) Решите уравнение
(4sin^2x-1)sqrt(64Pi^2-x^2) = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку [-30; -20]

б) Отобрать корни из отрезка [-3Pi; 7Pi]

а)cos2 x +3cos(3π/2+x)-2=0
б)[-5π;-3π]

а) Решите уравнение (9^(sin2x)-3^(2sqrt(2)sinx)) / (sqrt(11sinx)) = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку [7Pi/2; 5Pi]

a) Решите уравнение -cos2x+sqrt(2)cos(Pi/2+x)+1 = 0

б) Отберите корни из данного отрезка [2Pi; 3,5Pi]

б) Укажите корни этого уравнения, принадлежащие отрезку [m][-frac; -3pi][/m]

a) Решить уравнение 4sin^2x-3sinx*cosx-cos^2x = 0

б) Найти все корни этого уравнения, принадлежащие промежутку [0; Pi/4]

а) Решить уравнение cos4x-cos2x = 0

б) Отобрать корни на промежутке [Pi/2; 2Pi]

а) Решить уравнение log(-cosx)(1-0,5sinx) = 2

б) Отобрать корни на отрезке [14Pi; 16Pi]

б) Найдите корни, принадлежащие отрезку [m][frac; 6pi][/m]

9^(cosx) + 9^(-cosx) = 10/3

а) Решить уравнение sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1,

б) Отобрать корни на отрезке [-7Pi/2; -2Pi]

а) Решите уравнение tg^2x+5tgx+6=0
б) Найдите корни этого уравнения, принадлежащие промежутку [–2π;–π/2]

решите уравнение 4cos^2 x + 8sin (3П/2 — x) — 5 = 0
и укажите корни этого уравнения принадлежащие отрезку [-7П/2; -2П]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
2sin^3 (x + 3П/2) + cosx = 0
[5П/2; 4П]

решите уравнение и укажите корни этого уравнения принадлежащие отрезку
2√2sin (x + П/3) + 2cos^2 x = √6cosx + 2
[-3П; -3П/2]

решите уравнение и укажите корни этого уравнения принадлежащие отрезку
√2sin (x + П/4) + cos(2x) = sinx — 1
[7П/2; 5П]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
2sin (2x + П/6) + cosx = √3 sin(2x) — 1
[4П; 11П/2]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
2cos^3 x = sin (П/2 — x)
[-4П; -5П/2]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
8sin^2 x — 2√3cos (П/2 — x) — 9 = 0
[-5П/2; -П]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
cos2x + √2sin (П/2 + x) + 1 = 0
[2П; 7П/2]

а) Решите уравнение (6/5)^(cos3x)+(5/6)^(cos3x) = 2,

б) Укажите корни этого уравнения, принадлежащие промежутку [4Pi; 9Pi/2)

(sinx+cosx)sqrt(2) = tgx+ctgx, [-Pi; Pi/2]

а) Решите уравнение log(1,75)(2-sin^2x-sinx-cos2x) = 1

б) Отобрать корни на отрезке [-7Pi/2; — 2Pi]

а) Решите уравнение tg(2Pi-x)cos(3Pi/2 + 2x) = sin(-Pi/2)

б) Укажите корни этого уравнения, принадлежащие [2Pi; 7Pi/2]

а) Решите [m]log^2_ (4x^3) -2 = log_ (4x)[/m]

б) Отбор корней на промежутке [m] [frac; frac<sqrt[10]>] [/m]

а) Решите уравнение 8sinx+4cos^2x = 7;

б) Найдите корни на отрезке [-3Pi/2; -Pi/2]

a) Решите уравнения cos^2(x/2)-sin^2(x/2) = sin((Pi/2)-2x)

б) Укажите корни уравнения, принадлежащие отрезку [Pi; 5Pi/2]

[block]а) Решить уравнение (cos^2x+sqrt(3))/(sqrt(3)cos^2x) = (sqrt(3)+4)/(2sqrt(3)cosx)[/block]

б) Найдите корни на промежутке [-1;3]

Решите уравнение sin2x=cos(pi/2-x)
Найти все корни на промежутка [-Pi;0]

Решить уравнения 2sin^2x-5sinxcosx+2cos^2x=0
Выбрать корни принадлежащие [Pi/2;3Pi/2]

Решите уравнение cos4x-cos2x=0
Укажите корни, принадлежащие отрезку [Pi/2;2Pi]

2cos^2x+2sqrt(2)cos(п/2-x)+1=0;
Корни на промежутке [3п/2;3п]

1) Решите уравнение 2sin^2x — 3sqrt(2)sin (3Pi/2) — 4 = 0

2) Найдите корни, принадлежащие отрезку [Pi; 5Pi/6]

Решите неравенство 2sin^2x-2√2cos+1=0
корни на промежутке [5п/4 4п]

2sin²x+3√2cos(3π/2+x) +2 =0

a) Решите уравнение sqrt(x^(2)-2x+1) + sqrt(x^(2)+2x+1) = 2

б) Отбор корней на промежутке [1;2]

Найти корень уравнения 3+2sin2x=tgx+ctgx, принадлежащий интервалу (50°;90°)

а) Решить уравнение [m]3cosfraccosfracsinfrac = frac[/m]

б) Укажите корни, принадлежащие интервалу (-2Pi; -3Pi/2)

3log^2(8)(sinx) — 5log(8)(sinx) — 2
[-7π/2; 2π]

Решить уравнение
(tg ^2 x -2 tgx-3)*log5(-2sinx)
Отберите корни на отрезке [П/2;3П]

а) Решите уравнение (3ctg^2x+4ctgx)/(5cos^2x–4cosx)=0
б) отберите корни на промежутке [5п/2;5п]
Пожалуйста с отбором корней подробнее

а) Решите уравнение (log^2_(2)(sinx)+log2(sinx)) / (2cosx+sqrt(3))=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [0; 3π/2]

ctgx — 2cos(П/2 — 2x) = 0
Условие [ — П; П/2 ]

а) Решите уравнение 2/(tg^2x+1) = 3sin(3Pi+2x)

б) Найдите все корни уравнения, принадлежащие отрезку [-3Pi/2; Pi]

а) Решите уравнение (sin2x-2cosx)*log2(log(1/3)(x+5)) = 0 [Л13]

б) Укажите корни этого уравнения, принадлежащие промежутку (-3Pi/2; 0)

а) Решите уравнение 20^(cosx)=4^(cosx)⋅5^(−sinx).

б) Найдите все корни этого уравнения, принадлежащие отрезку [−9π/2;−3π].

а) Решите уравнение sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1

б) Отбор корней на отрезке [-7Pi/2; -2Pi]

а) Решить 2*9^x-11*6^x+3*4^(x+1) = 0,

б) Отбор корней: [0, 3]

а) Решить уравнение 8^(2sqrt(3)cosx) = 64^(sin2x),

б) Отбор корней на отрезке [2Pi; 7Pi/2]

а) Решить уравнение sqrt(x^3-4x^2-10x+29) = 3-x,

б) Отбор корней [-sqrt(3); sqrt(30)]

(1+tg^2x)cos(Pi/2+2x) = 2/sqrt(3), [-3Pi/2; Pi]

tg(Pi+x)cos(2x-Pi/2)=cos(-Pi/3), [7Pi; 17Pi/2]

tg(Pi-x)cos((3Pi/2) — 2x) = sin(5Pi/6), [-2Pi; -Pi/2]

sinx=sqrt((1-cosx)/2), [2Pi; 7Pi/2] [v8-13]

Решите уравнение 2sinx*sin3x=cos2x, и найдите корни из промежутка (0;П)

а) log(sinx) (1+cos2x+cos4x) = 0

б) Укажите решение уравнения принадлежащее отрезку [0; Pi]

а) Решите уравнение 2ctg^(2)x = 3/sinx

б) Отобрать корни [0, 2π)

а) Решить уравнение tg^2x+1 = 1/cos((3Pi/2)+2x)

б) Отобрать корни на отрезке [-Pi/2; 5Pi/2]

а) Решить уравнение 2sin(x+Pi/6)-2sqrt(3)cos^2x = cosx-2sqrt(3)

б) Отобрать корни на отрезке [-5Pi/2; -Pi]

а) Решить уравнение (1+2sinx)sinx = sin2x+sin(Pi/2-x)

б) Отбор корней на отрезке [-3Pi/2; 0]

sqrt(2cos^2x-sqrt(2))+sqrt(2)sinx = 0, [-7Pi; -11Pi/2] (л13)

а) Решить уравнение 2cos^2x = sin(Pi/2-x)

б) Отбор корней на отрезке [5Pi/2; 4Pi]

а) Решить уравнение cos4x-cos2x = 0

б) Отобрать корней на отрезке [Pi/2; 2Pi]

а) Решить уравнение sqrt(3)sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1

б) Отобрать корни на отрезке [-3Pi; -3Pi/2]

a) Решите уравнение sqrt(4cos2x-2sin2x)=2cosx
б) Укажите корни этого уравнения, принадлежащие отрезку [-13Pi/6; -Pi/2]

а) Решить уравнение: (sin(Pi-x))/(2sin^2(x/2)) = 2cos^2(x/2)

б) Сделать отбор корней на отрезке [7Pi/2;5Pi]

а) Решите уравнение 2/(tg^2x+1)=3sin(3Pi+2x).

б) Найдите все корни уравнения, принадлежащие отрезку [-3Pi/2 ; Pi].

а) Решить уравнение 9*81^(cosx)-28*9^(cosx)+3 = 0,

б) Отбор корней на отрезке [5Pi/2; 4Pi]

а) Решите уравнение: 4cos2x=2cos(Pi/2-x)+1

б) Выполните отбор корней: [-3Pi/2; Pi/2]

а) Решить уравнение sin2x / sin(3Pi/2-x) = sqrt(2)

б) Отбор корней на отрезке [2Pi; 7Pi/2]

а) Решите уравнение (25^(sin2x)-5^(2sqrt(2)sinx))/sqrt(17sinx) = 0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [3Pi/2; 4Pi]

а) Решить уравнение 16^(sin(2x+Pi/4)) =4^(sqrt(2)(sin2x+tgx*ctgx))*16^(sinx)

б) Отобрать корни на отрезке [3Pi/2; 3Pi]

а) Решите уравнение: sqrt(2)sin(2x-Pi/4)-sqrt(3)sinx = sin2x+1

б) Выполнить отбор корней: [-3Pi/2; 0]

а) Решить уравнение cos4x+sin2x = 0,

б) Выполнить отбор корней на промежутке 90°

а) Решить уравнение sin2x=2sinx-cosx+1

б) Выполнить отбор корней на отрезке [-2Pi;-Pi/2]

а) Решить уравнение:36^(2cosx+1)+16*4^(2cosx-1)=24*12^(2cosx)

б) Выполнить отбор корней: [-Pi/2;0]

a) Решите уравнение sin(2x+Pi/6) = cosx+cos(x+Pi/6)sinx

б) Определите, какие из его корней принадлежать отрезку [-5Pi; -7Pi/2]

а) Решить уравнение: 2cos(x-3Pi/2)+sqrt(2)cosx = sin2x-sqrt(2)

б) Укажите корни этого уравнения, принадлежащие отрезку [-5Pi;-7Pi/2]

а) Решите уравнение 3-2cos^2x+3sin(x-Pi) = 0

б) Найдите корни этого уравнения, принадлежащие промежутку [7Pi/2; 11Pi/2)

а) Решите уравнение 9*3^(2cosx)-10sqrt(3)*3^(cosx)+3 = 0

б) Укажите корни этого уравнения, принадлежащие отрезку [3Pi/2; 4Pi]

а) Решите уравнение cos^2x+4cos^23x+4cos3xcosx-6cosx-12cos3x=-9

б) Найдите решения уравнения, принадлежащие промежутку [2015Pi; 2017Pi]

а) Решите уравнение cos^25x+2cos5xsin(x-Pi/10)+1=0

б) Найдите решения уравнения, принадлежащие промежутку [2016Pi; 2017Pi].

🎬 Видео

Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синусСкачать

Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синус

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

Как решать тригонометрическое уравнение cos^2 x =1/2 Уравнение с косинусом в квадрате Решите уравненСкачать

Как решать тригонометрическое уравнение cos^2 x =1/2 Уравнение с косинусом в квадрате Решите уравнен

Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решенияСкачать

Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решения

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

а) Решите уравнение (x-2)^2/2+18/(x-2)^2=7((x-2)/2-3/(x-2))+10. б) Найдите его корни, принадлежащиеСкачать

а) Решите уравнение (x-2)^2/2+18/(x-2)^2=7((x-2)/2-3/(x-2))+10. б) Найдите его корни, принадлежащие

Я теряю корни ★ 99 ошиблись ★ Решите уравнение ★ x^x=(1/2)^(1/2)Скачать

Я теряю корни ★ 99 ошиблись ★ Решите уравнение ★ x^x=(1/2)^(1/2)

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

ЕГЭ по математике, задание 13Скачать

ЕГЭ по математике, задание 13

Решение уравнения a*sin^2(x)+b*sin(x)*cos(x)+c*cos^2(x)=0Скачать

Решение уравнения a*sin^2(x)+b*sin(x)*cos(x)+c*cos^2(x)=0

Уравнение x^2+px+q=0 имеет корни -6; 4. Найдите q. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать

Уравнение x^2+px+q=0 имеет корни  -6; 4. Найдите q. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРА

Простейшие уравнения с cosx. cosx=√2/2; cosx=-1/2Скачать

Простейшие уравнения с cosx. cosx=√2/2;  cosx=-1/2

4 способа решить уравнение sinx = cosxСкачать

4 способа решить уравнение sinx = cosx

Решите уравнение x^2+3x=54. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать

Решите уравнение x^2+3x=54. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРА

Свойства квадратного корня. Уравнение х2=а, 8 классСкачать

Свойства квадратного корня. Уравнение х2=а, 8 класс

🔴 Решите уравнение x^2=-2x+24 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

🔴 Решите уравнение x^2=-2x+24 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

№2 Линейное уравнение 2+3х=-2х-13 Как решать простое уравнение Решите уравнение 5кл 6кл 7кл ОГЭ ЕГЭСкачать

№2 Линейное уравнение 2+3х=-2х-13 Как решать простое уравнение Решите уравнение 5кл 6кл 7кл ОГЭ ЕГЭ
Поделиться или сохранить к себе: