Проверяемые элементы содержания по спецификации (2021): Знание позиционных систем счисления
Кодификатор 1.4.1/1.1.3. Уровень сложности П, 1 балл.
Время выполнения — 5 мин (значительно увеличено).
Задание требует понимания ЛЮБОЙ! системы счисления и ее математических законов.
Шаг 1. Оцениваем минимальное значение системы счисления по максимальной цифре.
Шаг 2. Смотрим на последнюю цифру в неизвестной системе (ноль или нет). Она означает, делится ли число без остатка на основание (0) или нет (не 0).
Шаг 3. . на занятии
Необходимые знания:
- Понимание записи и смысла цифр в системе счисления с любым основанием.
- Степени чисел (скорее кубы и квадраты) в пределах изучаемого на математике.
- Признаки делимости чисел и разложение числа на простые множители.
Видео:Решить уравнение с целой и дробной частьюСкачать
Решите уравнение 101n 1 101n 1116 ответ
Ответ запишите в десятичной системе счисления.
Переведем все числа в десятичную систему счисления:
101N+1 = 10
101N = 10
Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Решите уравнение 101n 1 101n 1116 ответ
№1. В системе счисления с некоторым основанием десятичное число 18 записывается в виде 30. Укажите это основание.
Составим уравнение: где n — основание этой системы счисления. Исходя из уравнения, n =6
№2. В системе счисления с некоторым основанием десятичное число 49 записывается в виде 100. Укажите это основание.
где n — основание этой системы счисления. Исходя из уравнения, n =7
№3. В системе счисления с некоторым основанием десятичное число 144 записывается в виде 264. Укажите это основание.
Запишем формулу преобразования числа, записанного в n системе счисления как 264 в десятичное число 144.
Решим это квадратное уравнение. Его корни: 7, -10. Так как основанием системы счисления не может быть отрицательное число, ответ — 7.
№4. В системе счисления с некоторым основанием десятичное число 25 записывается как 100. Найдите это основание.
где n — основание этой системы счисления. Исходя из уравнения, n =5
№5. В системе счисления с некоторым основанием число 12 записывается в виде 110. Укажите это основание.
Составим уравнение: где n — основание этой системы счисления. Исходя из уравнения, n =3
№6. В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.
Составим уравнение: где n — основание этой системы счисления. Исходя из уравнения, n =9
№7. В системе счисления с некоторым основанием десятичное число 13 записывается в виде 111. Укажите это основание.
Составим уравнение: 111n = 1 · n 2 + 1 · n 1 + 1 · n 0 = 1310, где n— основание этой системы счисления. Уравнениеn 2 + n − 12 = 0 имеет два корня: 3 и −4. Таким образом, основание системы счисления — 3.
№8. В системе счисления с некоторым основанием десятичное число 57 записывается как 111. Укажите это основание.
Составим уравнение: 111n = 1 · n 2 + 1 · n 1 + 1 · n 0 = 5710, где n — основание этой системы счисления. Уравнениеn 2 + n − 56 = 0 имеет два корня: 7 и −8. Таким образом, основание системы счисления — 7.
№9. В системе счисления с некоторым основанием десятичное число 12 записывается как 110. Укажите это основание.
Составим уравнение: 110n = 1 · n 2 + 1 · n 1 + 0 · n 0 = 1210, где n— основание этой системы счисления. Уравнениеn 2 + n − 12 = 0 имеет два корня: −4 и 3. Таким образом, основание искомой системы счисления — 3.
№10. В системе счисления с некоторым основанием десятичное число 15 записывается в виде 30. Укажите это основание.
Составим уравнение: 30n = 3 · n 1 + 0 · n 0 = 1510, где n— основание этой системы счисления. Откуда n = 5.
Уравнения и различные системы счисления
№1. Укажите, сколько всего раз встречается цифра 2 в записи чисел 10, 11, 12, …, 17 в системе счисления с основанием 5.
Запишем первое и последнее число в заданном диапазоне в системе счисления с основанием 5:
Всего цифра «2» встречается 7 раз.
Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).
Основание системы счисления равно 610 = 203.
№3. Сколько единиц содержится в двоичной записи значения выражения: 4 2020 + 2 2017 – 15?
Число 2 4040 в двоичной записи записывается как единица и 4040 нулей. Добавив число 2 2017 , получаем 100. 00100. 000 (единица, 2022 нулей, единица, 2017 нулей, всего 4040 разрядных цифр). Если вычесть из этого числа 2 4 = 100002 и прибавить 2 0 , то число примет вид 100. 001. 10001. В полученном числе единица, 2023 нуля, 2013 единиц, три нуля и одна единица. Значит, всего в числе 2015 единиц.
№4. Сколько единиц содержится в двоичной записи значения выражения: 4 2018 + 2 2018 – 32?
Число 2 4036 в двоичной записи записывается как единица и 4036 нулей. Добавив число 2 2018 , получаем 100. 00100. 000 (единица, 2018 нулей, единица, 2018 нулей, всего 4037 разрядных цифр). Если вычесть из этого числа 2 5 = 1000002, то число примет вид 100. 001. 100000. В полученном числе единица, 2019 нулей, 2013 единиц и пять нулей. Значит, всего в числе 2014 единиц.
Корни квадратного уравнения: 8 и −10. Следовательно, основание системы счисления равно 8.
№6. Укажите, сколько всего раз встречается цифра 3 в записи чисел 19, 20, 21, …, 33 в системе счисления с основанием 6.
Запишем первое и последнее число в заданном диапазоне в системе счисления с основанием 6:
Запишем по порядку числа, в записи которых встречается цифра 3, от до : 316, 326, 336, 346, 356, 436, 536. Всего цифра «3» встречается 8 раз.
№7. Укажите, сколько всего раз встречается цифра 2 в записи чисел 13, 14, 15, …, 23 в системе счисления с основанием 3.
Запишем первое и последнее число в заданном диапазоне в системе счисления с основанием 3:
Запишем все числа из заданного диапазона, содержащие цифру «2»: 112, 120, 121, 122, 200, 201, 202, 210, 211, 212. Итого 2 встречается 13 раз.
№8. Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 30, запись которых в системе счисления с основанием 5 начинается на 3?
Сначала определим запись числа 29 в пятеричной системе. . Выпишем числа, меньшие запись которых в пятеричной системе начинается на 3: 3, 30, 31, 32, 33, 34.
Переведем их в десятичную систему счисления. , , , , ,
№9. Укажите через запятую в порядке возрастания все десятичные натуральные числа, не превосходящие 17, запись которых в троичной системе счисления оканчивается на две одинаковые цифры?
Так как число в системе счисления с основанием 3 кончается на f , то искомое число в десятичной системе счисления при делении на 3 должно давать остаток f (т. Е x =3 y + f . у — любое целое неотрицательное число, x — искомое число) и частное от этого деления также должно давать остаток f при делении на 3 (т. е. y =3 z + f , z — любое целое неотрицательное число). Следовательно, x=9z+4f .
Подбирая f и z , найдем все натуральные решения этого уравнения, не превосходящие 17.
1. При f =1, z =0 x =4;
2. При f = 2, z =0 x =8;
3. При f = =0, z =1 x =9;
4. При f = 1, z =1 x =13;
5. При f = 2, z =1 x =17;
6. При f = 1, z =2 x =22.
Заметим, что в последнем варианте искомое число больше 17, значит, мы заканчиваем пересчет на предыдущем.
№10. Чему равно наименьшее основание позиционной системы счисления x, при котором 225x = 405y?
Ответ записать в виде целого числа.
Поскольку в левой и в правой частях есть цифра 5, оба основания больше 5, то есть перебор имеет смысл начинать с
Для каждого x вычисляем значение и решаем уравнение , причем нас интересуют только натуральные y >5
Для x =6 и x =7 нужных решений нет, а для x =8 получаем так что у=6
🎥 Видео
Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать
Как решить задание 7. Статград 28 марта. ЕГЭ Информатика 2023. Разбор задач пробника от 28.03.2023Скачать
ЕГЭ-2021x15: ДЕЛ(). Задача №15. (Информатика)Скачать
Попробуйте решить уравнение с целой частьюСкачать
Уравнения с целой и дробной частьюСкачать
Решение задания №1 | Графы | ЕГЭ по информатике | ВебиумСкачать
ВСЕ ТИПЫ 1 заданий | Информатика ЕГЭ 2023 | УмскулСкачать
Задание 13 на IP-адреса - ПОЛНЫЙ разбор | Информатика ЕГЭ 2024Скачать
ЗАДАНИЕ №2 за 129 СЕКУНД на Python // ЕГЭ информатика 2024Скачать
Разбор 10 задания | ОГЭ по информатике 2021Скачать
ЕГЭ по информатике - Задание 2 (Мощнейший метод!)Скачать
ВСЕ ТИПЫ 4 заданий | Информатика ЕГЭ 2023 | УмскулСкачать
Перечень. Всё про целую и дробную частиСкачать
Как сдать ОГЭ по информатике за 2 минуты?Скачать
ОГЭ ЗАДАНИЕ 20 РЕШИТЕ УРАВНЕНИЕСкачать
Информатика ЕГЭ. Задание 14. Уравнения с данными в различных системах счисленияСкачать
Уравнение с целой частью. Перебор случаевСкачать