Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

Мерзляк 9 класс Контрольная 3

Алгебра. Мерзляк 9 класс Контрольная 3 в 4-х вариантах. Контрольная работа по алгебре в 9 классе «Решение квадратных неравенств. Системы уравнений с двумя переменными» для УМК Мерзляк, Полонский, Якир. Транскрипт заданий.

Алгебра 9 класс (УМК Мерзляк)
Контрольная работа № 3

по теме «Решение квадратных неравенств.
Системы уравнений с двумя переменными»

Вариант 1

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

Вариант 2

  1. Решите неравенство: 1) х 2 + 2х – 3 2 + 6х ≥ 0; 3) х 2 2 – 8х + 16 > 0.
  2. Решите систему уравнений
    < х + 3у = 5,
    < 4 у + ху = 6.
  3. Найдите область определения функции: 1) у = √[3х – х 2 ]; 2) у = 4/√[4 – 8х – 5х 2 ].
  4. Решите графически систему уравнений
    < у = х 2 + 2х,
    < y – x = 2.
  5. Из двух городов, расстояние между которыми равно 25 км, выехали одновременно навстречу друг другу два велосипедиста и встретились через 1 ч после начала движения. Найдите скорость каждого велосипедиста, если один из них проезжает 30 км на 1 ч быстрее другого.
  6. Решите систему уравнений
    < 4х 2 + 4ху + у 2 = 25,
    < 2х – у = 3.

Вариант 3

  1. Решите неравенство: 1) х 2 + 3х – 4 > 0; 2) 4х 2 – 8х ≤ 0; 3) х 2 > 4; 4) х 2 – 10х + 25 ≤ 0.
  2. Решите систему уравнений
    < у + 2 х = 5,
    < 2х – ху = –1.
  3. Найдите область определения функции: 1) у = √[4х – х 2 ]; 2) у = 5/√[5 – 14х – 3х 2 ].
  4. Решите графически систему уравнений
    < у = х 2 + 4 х,
    < y – x = 4.
  5. Расстояние между двумя посёлками, равное 12 км, первый пешеход проходит на 1 ч быстрее второго. Найдите скорость каждого пешехода, если второй пешеход за 2 ч проходит на 2 км больше, чем первый за 1 ч.
  6. Решите систему уравнений
    < 9х 2 – 12ху + 4у 2 = 9,
    < х + 2у = 9.

Вариант 4

  1. Решите неравенство: 1) х 2 + 5х – 6 2 + 24х ≥ 0; 3) х 2 2 – 12х + 36 > 0.
  2. Решите систему уравнений
    < 2х + у = 4,
    < ху + 2х = –12.
  3. Найдите область определения функции:
    1) у = √[7х – х 2 ]; 2) у = 11/√[9 + 7 х – 2х 2 ].
  4. Решите графически систему уравнений
    < у = 4х – х 2 ,
    < 2x + y = 5.
  5. От двух пристаней, расстояние между которыми равно 50 км, отправились одновременно навстречу друг другу два катера и встретились через 1 ч после начала движения. Найдите скорость каждого катера, если один из них проходит 60 км на 1 ч быстрее другого.
  6. Решите систему уравнений
    < 16х 2 + 8ху + у 2 = 36,
    < 3х – у = 8.

Ответы на КР-3 Вариант 1

1. Решите неравенство: 1) х 2 – 4х – 5 > 0; 2) 3х 2 – 12х ≤ 0;
3) х 2 > 16; 4) х 2 – 4х + 4 ≤ 0.

Нажмите на спойлер ниже, чтобы увидеть ОТВЕТЫ на задание.

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

№ 2. Решите систему уравнений
< х – 5у = 3,
< ху + 3у = 11.

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

№ 3. Найдите область определения функции: 1) у = √[5х – х 2 ]; 2) у = 6/√[8 + 10х – 3х 2 ].

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

№ 4. Решите графически систему уравнений
< у = х 2 – 6х,
< х – у = 6.

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

№ 5. Расстояние между двумя сёлами, равное 6 км, велосипедист проезжает на 1 ч быстрее, чем проходит это расстояние пешеход. Найдите скорость каждого из них, если за 2 ч пешеход проходит на 4 км меньше, чем велосипедист проезжает за 1 ч.

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

Ответы на КР-3 Вариант 2

№ 1. Решите неравенство: 1) х 2 + 2х – 3 2 + 6х ≥ 0; 3) х 2 2 – 8х + 16 > 0.

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

№ 2. Решите систему уравнений
< х + 3у = 5,
< 4 у + ху = 6.

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

№ 3. Найдите область определения функции: 1) у = √[3х – х 2 ]; 2) у = 4/√[4 – 8х – 5х 2 ].

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

№ 4. Решите графически систему уравнений
< у = х 2 + 2х,
< y – x = 2.

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

№ 5. Из двух городов, расстояние между которыми равно 25 км, выехали одновременно навстречу друг другу два велосипедиста и встретились через 1 ч после начала движения. Найдите скорость каждого велосипедиста, если один из них проезжает 30 км на 1 ч быстрее другого.

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

№ 6. Решите систему уравнений
< 4х 2 + 4ху + у 2 = 25,
< 2х – у = 3.

Решите систему уравнений х2 12ху 36 у2 16 x 6y 8

Вы смотрели: Алгебра. Мерзляк 9 класс Контрольная 3 в 4-х вариантах. Контрольная работа по математике в 9 классе «Решение квадратных неравенств. Системы уравнений с двумя переменными» по УМК Мерзляк, Полонский, Якир. Цитаты из пособия «Алгебра 9 класс. Методическое пособие / Е.В. Буцко и др.» использованы в учебных целях.

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Мерзляк 9 класс Контрольная 3: 4 комментария

Можно было бы получить ответы для проверки?

К сожалению, авторы пособия не указали ответы на свои задания.

2 вариант почему нету

А где 2 вариант?

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Предметы

Видео:Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Новые работы

Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

Найти контрольную:

Видео:Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Авторы работ и УМК

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Предметы

Видео:Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Важные страницы

Соглашение о конфиденциальности

(с) 2020-2022. Дистанционный информационный Центр НПИ (г.Москва). Бесплатная помощь школьникам, находящимся на домашнем или семейном обучении. Цитаты из учебных пособий размещены в учебных целях. Контакты: kip1979@mail.ru

Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Популярное

Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Предупреждение

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, пользовательских данных (сведения о местоположении; тип и версия ОС; тип и версия Браузера; тип устройства и разрешение его экрана; источник откуда пришел на сайт пользователь; с какого сайта или по какой рекламе; язык ОС и Браузера; какие страницы открывает и на какие кнопки нажимает пользователь; ip-адрес) в целях функционирования сайта, проведения ретаргетинга и проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Немного теории.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:Решение системы линейных уравнений. Подстановка. С дробными выражениями.Скачать

Решение системы линейных уравнений. Подстановка. С дробными выражениями.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Системы уравнений по-шагам

Видео:СИСТЕМА УРАВНЕНИЙ второй степени 8 классСкачать

СИСТЕМА УРАВНЕНИЙ второй степени 8 класс

Результат

Примеры систем уравнений

  • Метод Гаусса
  • Метод Крамера
  • Прямой метод
  • Система нелинейных уравнений

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

📹 Видео

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

Перевод(из 2 в 16) из двоичной в шестнадцатеричную и обратно.Быстрый и лёгкий. Системы счисления.Скачать

Перевод(из 2 в 16) из двоичной в шестнадцатеричную и обратно.Быстрый и лёгкий. Системы счисления.

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ #shorts #профильныйегэСкачать

МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ  #shorts #профильныйегэ
Поделиться или сохранить к себе: