Найдем корень нелинейного уравнения в табличном процессоре Excel методом касательных с использованием циклических ссылок. Для нахождения корня будем использовать формулу:
Для включения режима циклических вычислений в Excel 2003 в меню Сервис/Параметры/вкладка Вычисления следует поставить флажок Итерации и флажок выбора вида ведения вычислений: автоматически. В MS Excel 2010 следует зайти в меню Файл/Параметры/Формулы и поставить флажок в поле «Включить итеративные вычисления» :
Найдем производную функции f(x)=x-x 3 +1
f’(x)=1-3x 2
В ячейку А3 введем значение а =1, ячейку В3 введем формулу расчета текущего значения х: =ЕСЛИ(B3=0;A3;B3-(B3-СТЕПЕНЬ(B3;3)+1)/(1-3*СТЕПЕНЬ(B3;2)))
В ячейку С3 введем формулу для контроля значения f(x): =B3-СТЕПЕНЬ(B3;3)+1.
Получим корень уравнения в ячейке В3 х=1,325.
Введем начальное приближение в ячейку А3 =2. Но для того чтобы вычисления были правильные, недостаточно изменить число в ячейке А3 и запустить процесс вычислений. Потому что в этом случае вычисления продолжаться с последнего вычисленного ранее значения. Это значение, в ячейке В3, необходимо обнулить, для этого можно заново записать туда формулу или просто выбрать ячейку с формулой и дважды щелкнуть мышью на ней . После этого поставить курсор на ячейку с формулой и нажать клавишу Enter для запуска процесса итерационных вычислений.
Получим тот же результат, значит корень на данном промежутке один.
Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать
Решение уравнений в EXCEL методом половинного деления, методом хорд и касательных.
При прохождении темы численные методы учащиеся уже умеют работать с электронными таблицами и составлять программы на языке паскаль. Работа комбинированного характера.Расчитана на 40 минут. Цель работы повторить и закрепить навыки паботы с программами EXCEL, ABCPascal. Материал содержит 2 файла. Один содержит теоретический материал, так как он и предлагается ученику . Во 2-м файле пример работы ученика Иванова Ивана.
Видео:Численный метод Ньютона в ExcelСкачать
Скачать:
Вложение | Размер |
---|---|
материал для ученика | 57.5 КБ |
работа ученика | 27 КБ |
Видео:Численное решение уравнений, урок 4/5. Метод касательных (Ньютона)Скачать
Предварительный просмотр:
Аналитическое решение некоторых уравнений, содержащих, например тригонометрические функции может быть получено лишь для единичных частных случаев. Так, например, нет способа решить аналитически даже такое простое уравнение, как cos x=x
Численные методы позволяют найти приближенное значение корня с любой заданной точностью.
Приближённое нахождение обычно состоит из двух этапов:
1) отделение корней, т.е. установление возможно точных промежутков [a,b], в которых содержится только один корень уравнения;
2) уточнение приближённых корней, т.е. доведение их до заданной степени точности.
Мы будем рассматривать решения уравнений вида f(x)=0. Функция f(x) определена и непрерывна на отрезке [а.Ь]. Значение х 0 называется корнем уравнения если f(х 0 )=0
Для отделения корней будем исходить из следующих положений:
- Если f(a)* f(b] a, b существует, по крайней мере, один корень
- Если функция y = f(x) непрерывна на отрезке [a, b], и f(a)*f(b) и f ‘(x) на интервале (a, b) сохраняет знак, то внутри отрезка [а, b] существует единственный корень уравнения
Приближённое отделение корней можно провести и графически. Для этого уравнение (1) заменяют равносильным ему уравнением р(х) = ф(х), где функции р(х) и ф(х] более простые, чем функция f(x). Тогда, построив графики функций у = р(х) и у = ф(х), искомые корни получим, как абсциссы точек пересечения этих графиков
Для уточнения корня разделим отрезок [а, b] пополам и вычислим значение функции f(х) в точке x sr =(a+b)/2. Выбираем ту из половин [a, x sr ] или [x sr ,b], на концах которых функция f(x) имеет противоположные знаки.. Продолжаем процесс деления отрезка пополам и проводим то же рассмотрение до тех пор, пока. длина [a,b] станет меньше заданной точности . В последнем случае за приближённое значение корня можно принять любую точку отрезка [a,b] (как правило, берут его середину). Алгоритм высокоэффективен, так как на каждом витке (итерации) интервал поиска сокращается вдвое; следовательно, 10 итераций сократят его в тысячу раз. Сложности могут возникнуть с отделением корня у сложных функций.
Для приближенного определения отрезка на котором находится корень можно воспользоваться табличным процессором, построив график функции
ПРИМЕР : Определим графически корень уравнения . Пусть f1(х) = х , a и построим графики этих функций. (График). Корень находится на интервале от 1 до 2. Здесь же уточним значение корня с точностью 0,001(на доске шапка таблицы)
Алгоритм для программной реализации
- а:=левая граница b:= правая граница
- m:= (a+b)/2 середина
- определяем f(a) и f(m)
- если f(a)*f(m)
- если (a-b)/2>e повторяем , начиная с пункта2
Точки графика функции на концах интервала соединяются хордой. Точка пересечения хорды и оси Ох (х*) и используется в качестве пробной. Далее рассуждаем так же, как и в предыдущем методе: если f(x a ) и f(х*) одного знака на интервале , нижняя граница переносится в точку х*; в противном случае – переносим верхнюю границу. Далее проводим новую хорду и т.д.
Осталось только уточнить, как найти х*. По сути, задача сводится к следующей: через 2 точки с неизвестными координатами (х 1 , у 1 ) и (х 2 , у 2 ) проведена прямая; найти точку пересечения этой прямой и оси Ох.
Запишем уравнение прямой по двум точках:
В точке пересечения этой прямой и оси Ох у=0, а х=х*, то есть
, откуда
процесс вычисления приближённых значений продолжается до тех пор, пока для двух последовательных приближений корня х„ и х п _1 не будет выполняться условие abs(xn-x n-1 ) е — заданная точность
Сходимость метода гораздо выше предыдущего
Алгоритм различается только в пункте вычисления серединной точки- пересечения хорды с осью абсцисс и условия останова (разность между двумя соседними точками пересечения)
Уравнения для самостоятельного решения: (отрезок в excel ищем самостоятельно)
Видео:Метод Ньютона для решения нелинйеных уравнений в MS ExcelСкачать
Метод Ньютона в Excel
Как видно, процесс нахождения корней нелинейного уравнения методом Ньютона состоит из следующих этапов:
- Получения шаблона.
- Уточнение интервалов в ячейках B2 , B3 .
- Замена в формуле ЕСЛИ запятую ( , ) на точку с запятой ( ; ).
- Копирование строки итераций до требуемой точности (столбец E ).
Примечание: столбец A — номер итерации, столбец B — корень уравнения X , столбец C — значение функции F(X) , столбец D — значение первой производной dF(X) , столбец E — точность eps .
💡 Видео
Метод касательныхСкачать
Численное решение уравнений, урок 3/5. Метод хордСкачать
Численное решение уравнений, урок 5/5. Комбинированный метод хорд и касательныхСкачать
12 Метод Ньютона (Метод касательных) Excel Calc Численные методы решения нелинейного уравненияСкачать
Метод простых итераций пример решения нелинейных уравненийСкачать
Решение нелинейного уравнения методом простых итераций (программа)Скачать
Как найти корни уравнения в Excel с помощью Подбора параметраСкачать
Метод касательных (метод Ньютона)Скачать
Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать
Решение систем линейных уравнений методом простой итерации в ExcelСкачать
1 3 Решение нелинейных уравнений методом простых итерацийСкачать
Решение системы уравнений в ExcelСкачать
15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать
Метод_Зейделя_ExcelСкачать
8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравненияСкачать
Решение системы нелинейных уравнений графическим способом средствами ExcelСкачать