Найдем корень нелинейного уравнения в табличном процессоре Excel методом касательных с использованием циклических ссылок. Для нахождения корня будем использовать формулу:
Для включения режима циклических вычислений в Excel 2003 в меню Сервис/Параметры/вкладка Вычисления следует поставить флажок Итерации и флажок выбора вида ведения вычислений: автоматически. В MS Excel 2010 следует зайти в меню Файл/Параметры/Формулы и поставить флажок в поле «Включить итеративные вычисления» :
Найдем производную функции f(x)=x-x 3 +1
f’(x)=1-3x 2
В ячейку А3 введем значение а =1, ячейку В3 введем формулу расчета текущего значения х: =ЕСЛИ(B3=0;A3;B3-(B3-СТЕПЕНЬ(B3;3)+1)/(1-3*СТЕПЕНЬ(B3;2)))
В ячейку С3 введем формулу для контроля значения f(x): =B3-СТЕПЕНЬ(B3;3)+1.
Получим корень уравнения в ячейке В3 х=1,325.
Введем начальное приближение в ячейку А3 =2. Но для того чтобы вычисления были правильные, недостаточно изменить число в ячейке А3 и запустить процесс вычислений. Потому что в этом случае вычисления продолжаться с последнего вычисленного ранее значения. Это значение, в ячейке В3, необходимо обнулить, для этого можно заново записать туда формулу или просто выбрать ячейку с формулой и дважды щелкнуть мышью на ней . После этого поставить курсор на ячейку с формулой и нажать клавишу Enter для запуска процесса итерационных вычислений.
Получим тот же результат, значит корень на данном промежутке один.
Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать
Решение уравнений в EXCEL методом половинного деления, методом хорд и касательных.
При прохождении темы численные методы учащиеся уже умеют работать с электронными таблицами и составлять программы на языке паскаль. Работа комбинированного характера.Расчитана на 40 минут. Цель работы повторить и закрепить навыки паботы с программами EXCEL, ABCPascal. Материал содержит 2 файла. Один содержит теоретический материал, так как он и предлагается ученику . Во 2-м файле пример работы ученика Иванова Ивана.
Видео:Численный метод Ньютона в ExcelСкачать
Скачать:
Вложение | Размер |
---|---|
материал для ученика | 57.5 КБ |
работа ученика | 27 КБ |
Видео:Численное решение уравнений, урок 4/5. Метод касательных (Ньютона)Скачать
Предварительный просмотр:
Аналитическое решение некоторых уравнений, содержащих, например тригонометрические функции может быть получено лишь для единичных частных случаев. Так, например, нет способа решить аналитически даже такое простое уравнение, как cos x=x
Численные методы позволяют найти приближенное значение корня с любой заданной точностью.
Приближённое нахождение обычно состоит из двух этапов:
1) отделение корней, т.е. установление возможно точных промежутков [a,b], в которых содержится только один корень уравнения;
2) уточнение приближённых корней, т.е. доведение их до заданной степени точности.
Мы будем рассматривать решения уравнений вида f(x)=0. Функция f(x) определена и непрерывна на отрезке [а.Ь]. Значение х 0 называется корнем уравнения если f(х 0 )=0
Для отделения корней будем исходить из следующих положений:
- Если f(a)* f(b] a, b существует, по крайней мере, один корень
- Если функция y = f(x) непрерывна на отрезке [a, b], и f(a)*f(b) и f ‘(x) на интервале (a, b) сохраняет знак, то внутри отрезка [а, b] существует единственный корень уравнения
Приближённое отделение корней можно провести и графически. Для этого уравнение (1) заменяют равносильным ему уравнением р(х) = ф(х), где функции р(х) и ф(х] более простые, чем функция f(x). Тогда, построив графики функций у = р(х) и у = ф(х), искомые корни получим, как абсциссы точек пересечения этих графиков
Для уточнения корня разделим отрезок [а, b] пополам и вычислим значение функции f(х) в точке x sr =(a+b)/2. Выбираем ту из половин [a, x sr ] или [x sr ,b], на концах которых функция f(x) имеет противоположные знаки.. Продолжаем процесс деления отрезка пополам и проводим то же рассмотрение до тех пор, пока. длина [a,b] станет меньше заданной точности . В последнем случае за приближённое значение корня можно принять любую точку отрезка [a,b] (как правило, берут его середину). Алгоритм высокоэффективен, так как на каждом витке (итерации) интервал поиска сокращается вдвое; следовательно, 10 итераций сократят его в тысячу раз. Сложности могут возникнуть с отделением корня у сложных функций.
Для приближенного определения отрезка на котором находится корень можно воспользоваться табличным процессором, построив график функции
ПРИМЕР : Определим графически корень уравнения . Пусть f1(х) = х , a и построим графики этих функций. (График). Корень находится на интервале от 1 до 2. Здесь же уточним значение корня с точностью 0,001(на доске шапка таблицы)
Алгоритм для программной реализации
- а:=левая граница b:= правая граница
- m:= (a+b)/2 середина
- определяем f(a) и f(m)
- если f(a)*f(m)
- если (a-b)/2>e повторяем , начиная с пункта2
Точки графика функции на концах интервала соединяются хордой. Точка пересечения хорды и оси Ох (х*) и используется в качестве пробной. Далее рассуждаем так же, как и в предыдущем методе: если f(x a ) и f(х*) одного знака на интервале , нижняя граница переносится в точку х*; в противном случае – переносим верхнюю границу. Далее проводим новую хорду и т.д.
Осталось только уточнить, как найти х*. По сути, задача сводится к следующей: через 2 точки с неизвестными координатами (х 1 , у 1 ) и (х 2 , у 2 ) проведена прямая; найти точку пересечения этой прямой и оси Ох.
Запишем уравнение прямой по двум точках:
В точке пересечения этой прямой и оси Ох у=0, а х=х*, то есть
, откуда
процесс вычисления приближённых значений продолжается до тех пор, пока для двух последовательных приближений корня х„ и х п _1 не будет выполняться условие abs(xn-x n-1 ) е — заданная точность
Сходимость метода гораздо выше предыдущего
Алгоритм различается только в пункте вычисления серединной точки- пересечения хорды с осью абсцисс и условия останова (разность между двумя соседними точками пересечения)
Уравнения для самостоятельного решения: (отрезок в excel ищем самостоятельно)
Видео:Численное решение уравнений, урок 3/5. Метод хордСкачать
Метод Ньютона в Excel
Как видно, процесс нахождения корней нелинейного уравнения методом Ньютона состоит из следующих этапов:
- Получения шаблона.
- Уточнение интервалов в ячейках B2 , B3 .
- Замена в формуле ЕСЛИ запятую ( , ) на точку с запятой ( ; ).
- Копирование строки итераций до требуемой точности (столбец E ).
Примечание: столбец A — номер итерации, столбец B — корень уравнения X , столбец C — значение функции F(X) , столбец D — значение первой производной dF(X) , столбец E — точность eps .
🎦 Видео
Метод Ньютона для решения нелинйеных уравнений в MS ExcelСкачать
12 Метод Ньютона (Метод касательных) Excel Calc Численные методы решения нелинейного уравненияСкачать
Численное решение уравнений, урок 5/5. Комбинированный метод хорд и касательныхСкачать
Метод касательныхСкачать
Как найти корни уравнения в Excel с помощью Подбора параметраСкачать
Метод простых итераций пример решения нелинейных уравненийСкачать
Решение нелинейного уравнения методом простых итераций (программа)Скачать
Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать
Метод касательных (метод Ньютона)Скачать
Решение системы уравнений в ExcelСкачать
Решение систем линейных уравнений методом простой итерации в ExcelСкачать
15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать
1 3 Решение нелинейных уравнений методом простых итерацийСкачать
Метод_Зейделя_ExcelСкачать
8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравненияСкачать
Решение системы нелинейных уравнений графическим способом средствами ExcelСкачать