Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Видео:Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

math4school.ru

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Видео:Классический способ решения Диофантовых уравнений ➜ Решите уравнение в целых числах ➜ 13x-7y=6Скачать

Классический способ решения Диофантовых уравнений ➜ Решите уравнение в целых числах ➜ 13x-7y=6

Уравнения в целых числах

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Немного теории

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

способ перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод бесконечного спуска.

Задачи с решениями

1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

2. Решить в целых числах уравнение:

а) 20х + 12у = 2013;

в) 201х – 1999у = 12.

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

Поскольку числа 5 и 7 взаимно простые, то

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x0 = 1273·12 = 15276, y0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

3. Решить в целых числах уравнение:

а) x 3 + y 3 = 3333333;

б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).

а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;

б) в целых числах уравнение x + y = x 2 – xy + y 2 .

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x 2 – (y + 1)x + y 2 – y = 0.

Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?

Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:

y = xn = n(2n 2 +1) = 2n 3 +n.

Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).

6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.

Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

и исходное уравнение примет вид

Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x1 2 + y1 2 + z1 2 + u1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x1 2 + y1 2 + z1 2 + u1 2 не делится даже на 4. Значит,

и мы получаем уравнение

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

7. Докажите, что уравнение

(х – у) 3 + (y – z) 3 + (z – x) 3 = 30

не имеет решений в целых числах.

Воспользуемся следующим тождеством:

(х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .

если х = 1, то у 2 = 1,

если х = 3, то у 2 = 9.

Этим случаям соответствуют следующие пары чисел:

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

9. Решите следующую систему уравнений в натуральных числах:

a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).

3abc > 0, то a 3 > b 3 + c 3 ;

таким образом имеем

b 2 2 + х = у 4 + у 3 + у 2 + у.

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у 2 + 1),

х(х + 1) = (у 2 + у)(у 2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

Задачи без решений

1. Решить в целых числах уравнение:

б) х 2 + у 2 = х + у + 2.

2. Решить в целых числах уравнение:

а) х 3 + 21у 2 + 5 = 0;

б) 15х 2 – 7у 2 = 9.

3. Решить в натуральных числах уравнение:

4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение

5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.

Видео:Алгебра 10 класс (Урок№9 - Решение уравнений в целых числах.)Скачать

Алгебра 10 класс (Урок№9 - Решение уравнений в целых числах.)

Решение уравнений в целых числах

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

Видео:Решение уравнений в целых числахСкачать

Решение уравнений в целых числах

Математика, 9 класс

Видео:10 класс. Алгебра. Решение уравнений в целых числахСкачать

10 класс. Алгебра. Решение уравнений в целых числах

, ДВГГУ

Видео:Решите уравнение в целых числах 5x-4y=3 ➜ Как решать Диофантовы уравнения?Скачать

Решите уравнение в целых числах 5x-4y=3 ➜ Как решать Диофантовы уравнения?

Решение уравнений в целых числах

Решение уравнений в целых числах является одной из древнейших математических задач.

Алгебраическое уравнение с целыми коэффициентами, имеющее более одного неизвестного, когда стоит задача найти его целые или рациональные решения называется неопределенным или диофантовым, по имени древнегреческого математика Диофанта, который занимался проблемой решения таких уравнений. По некоторым данным Диофант жил до 364 года н. э. Достоверно известно лишь своеобразное жизнеописание Диофанта, которое по преданию было высечено на его надгробии и представляло задачу-головоломку: «Бог ниспослал ему быть мальчиком шестую часть жизни; добавив к сему двенадцатую часть, Он покрыл его щеки пушком; после седьмой части Он зажег ему свет супружества и через пять лет после вступления в брак даровал ему сына. Увы! Несчастный поздний ребенок, достигнув меры половины полной жизни отца, он был унесен безжалостным роком. Через четыре года, утешая постигшее его горе наукой о числах, он [Диофант] завершил свою жизнь».

Цель настоящей статьи рассмотреть методы решения некоторых диофантовых уравнений. Многие из этих методов предполагают применение некоторых понятий и алгоритмов теории делимости, в связи с этим, напомним их.

Определение 1. Наибольшим общим делителем (НОД) целых чисел a1, a2,…, an называется такой их положительный общий делитель, который делится на любой другой общий делитель этих чисел.

Теорема 2. Если Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, то существуют такие целые числа х и у, что имеет место равенство Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

Замечание. Это равенство называется линейной комбинацией или линейным представлением НОД через эти числа.

Определение 3. Числа а и b называются взаимно простыми, если НОД этих чисел равен 1.

Теорема 4. (теорема о делении с остатком) Для любого целого а и целого Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104существуют и единственные целые q и r, такие что Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

Замечание. Если Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104то q называется неполным частным, а r – остатком от деления a на b. В частности, если Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, то Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104и Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104делится на Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

Из теоремы 4 следует, что при фиксированном целом m > 0 любое целое число а можно представить в одном из следующих видов:

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

При этом если Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104то будем иметь Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, если Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104и

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, если Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

На следующей теореме основан способ нахождения наибольшего общего делителя целых чисел.

Теорема 5. Пусть a и b – два целых числа, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 1040 и Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104тогда Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

Этот способ называется алгоритмом Евклида. Задача нахождения НОД чисел a и b сводится к более простой задаче нахождения НОД b и r, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104. Если r = 0, то Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104. Если же Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, то рассуждения повторяем, отправляясь от b и r. В результате получаем цепочку равенств:

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104,

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104,

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, ……………………(**)

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104,

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

Мы получим убывающую последовательность натуральных чисел

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

которая не может быть бесконечной. Поэтому существует остаток, равный нулю: пусть Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104. На основании теоремы 10 из (**) следует, что Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

1. Решение неопределенных уравнений первой степени от двух переменных в целых числах

Рассмотрим два метода решения диофантовых уравнений первой степени от двух переменных.

Алгоритм этого метода рассмотрим на примере решения конкретного уравнения. Шаги алгоритма, которые необходимо применять при решении любого такого уравнения выделим курсивом.

Пример 1. Решить уравнение в целых числах 5x + 8y = 39.

1. Выберем неизвестное, имеющее наименьший коэффициент (в нашем случае это х), и выразим его через другое неизвестное: Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

2. Выделим целую часть: Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104. Очевидно, что х будет целым, если выражение Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 – 3y без остатка делится на 5.

3. Введем дополнительную целочисленную переменную z следующим образом: 4 –3y = 5z. В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами.

4. Решаем его уже относительно переменной y, рассуждая точно также как в п.1, 2: Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104. Выделяя целую часть, получим:

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

5. Рассуждая аналогично предыдущему, вводим новую переменную u: 3u = 1 – 2z.

6. Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z: Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104= Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104. Требуя, чтобы Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104было целым, получим: 1 – u = 2v, откуда u = 1 – 2v. Дробей больше нет, спуск закончен (процесс продолжаем до тез пор, пока в выражении для очередной переменной не останется дробей).

7. Теперь необходимо «подняться вверх». Выразим через переменную v сначала z, потом y и затем x:

z = Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104= Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104= 3v – 1; Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104= Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 1043 – 5v.

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104= Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104= 3+8v.

8. Формулы x = 3+8v и y = 3 – 5v, где v – произвольное целое число, представляют общее решение исходного уравнения в целых числах.

Замечание. Таким образом, метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.

Это уравнение и любое другое линейное уравнение с двумя неизвестными может быть решено и другим методом, с использованием алгоритма Евклида, более того можно доказать, что уравнение, рассмотренное выше всегда имеет единственное решение. Приведем здесь формулировки теорем, на основании которых может быть составлен алгоритм решения неопределенных уравнений первой степени от двух переменных в целых числах.

Теорема 1.1. Если в уравнении Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, то уравнение имеет, по крайней, мере одно решение.

Теорема 2.2. Если в уравнении Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104и с не делится на Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, то уравнение целых решений не имеет.

Теорема 3.3. Если в уравнении Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104и Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, то оно равносильно уравнению Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, в котором Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

Теорема 4.4. Если в уравнении Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, то все целые решения этого уравнения заключены в формулах: Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

где х0, у0 – целое решение уравнения Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104— любое целое число.

Как уже отмечалось выше, сформулированные теоремы позволяют составить следующий алгоритм решения в целых числах уравнения вида Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

1. Найти наибольший общий делитель чисел a и b,

если Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104и с не делится на Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, то уравнение целых решений не имеет;

если Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104и Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, то

2. Разделить почленно уравнение Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104на Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, получив при этом уравнение Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, в котором Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

3. Найти целое решение (х0, у0) уравнения Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104путем представления 1 как линейной комбинации чисел Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104и Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104;

4. Составить общую формулу целых решений данного уравнения

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

где х0, у0 – целое решение уравнения Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104— любое целое число.

Пример 2. Решить уравнение в целых числах 407х – 2816y = 33.

Воспользуемся составленным алгоритмом.

1. Используя алгоритм Евклида, найдем наибольший общий делитель чисел 407 и 2816:

2816 = 407·6 + 374;

33 = 11·3. Следовательно (407,2816) = 11, причем 33 делится на 11

2. Разделим обе части первоначального уравнения на 11, получим уравнение 37х – 256y = 3, причем (37, 256) = 1

3. С помощью алгоритма Евклида найдем линейное представление числа 1 через числа 37 и 256.

Выразим 1 из последнего равенства, затем, последовательно поднимаясь по цепочке равенств, будем выражать 3; 34 и полученные выражения подставим в выражение для 1.

1 = 34 – 3·11 = 34 – (37 – 34·1) ·11 = 34·12 – 37·11 = (256 – 37·6) ·12 – 37·11 =

– 83·37 – 256·(–12). Таким образом, 37·(– 83) – 256·(–12) = 1, следовательно пара чисел х0 = – 83 и у0 = – 12 есть решение уравнения 37х – 256y = 3.

4. Запишем общие формулы решений первоначального уравнения

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

где t — любое целое число.

Замечание. Можно доказать, что если пара (х1,y1) — целое решение уравнения Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, где Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104, то все целые решения этого уравнения находятся по формулам: Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104.

2. Методы решения некоторых нелинейных диофантовых уравнений

Общие подходы к решению нелинейных диофантовых уравнений достаточно сложны и предполагают серьезную подготовку по теории чисел. Мы рассмотрим здесь некоторые уравнения и элементарные методы их решения.

Метод разложения на множители

Первоначальное уравнение путем группировки слагаемых и вынесения общих множителей приводится к виду, когда в левой части уравнения стоит произведение сомножителей, содержащих неизвестные, а справа стоит некоторое число. Рассматриваются все делители числа, стоящего в правой части уравнения. Проводится исследование, в котором каждый сомножитель, стоящий в правой части уравнения приравнивается к соответствующему делителю числа, стоящего в правой части уравнения.

Пример 3. Решить уравнение в целых числах y3 — x3 = 91.

Решение. 1) Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

2) Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

3) Проводим исследование. Заметим, что для любых целых x и y число

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение (1) равносильно совокупности систем уравнений:

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104; Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104; Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104; Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

4) Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Ответ: уравнение (1) имеет четыре решения (5; 6); (-6; -5); (-3; 4); (-4;3).

Пример 4. Решить в целых числах уравнение x + y = xy.

Решение. 1) Перенесем все члены уравнения влево и к обеим частям полученного уравнения прибавим (–1): x + yxy – 1 = – 1

Сгруппируем первое – четвертое и второе – третье слагаемые и вынесем общие множители, в результате получим уравнение: (x — 1)(y — 1) = 1

2) Произведение двух целых чисел может равняться 1 в том и только в том случае, когда оба этих числа равны или 1, или (–1).

3) Записав соответствующие системы уравнений и решив их, получим решение исходного уравнения. Ответ: (0,0) и (2,2).

Пример 5. Доказать, что уравнение (x — y)3 + (y — z)3 + (z — x)3 = 30 не имеет решений в целых числах.

Решение. 1) Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

2) Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения (2) равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

Метод испытания остатков

Этот метод основан на исследовании возможных остатков левой и правой частей уравнения от деления на некоторое фиксированное натуральное число.

Рассмотрим примеры, которые раскрывают сущность данного метода.

Пример 6. Решить в целых числах уравнение x2 + 1 = 3y.

Решение. 1) Заметим, что правая часть уравнения делится на 3 при любом целом y.

2) Исследуем какие остатки может иметь при делении на три левая часть этого уравнения.

По теореме о делении с остатком целое число х либо делится на 3, либо при делении на три в остатке дает 1 или 2.

Если х = 3k, то правая часть уравнения на 3 не делится.

Если х = 3k+1, то x2 + 1= (3k+1)2+1=3m+2, следовательно, опять левая часть на 3 не делится.

Если х = 3k+2, то x2 + 1= (3k+2)2+1=3m+2, следовательно, и в этом случае левая часть уравнения на три не делится.

Таким образом, мы получили, что ни при каких целых х левая часть уравнения на 3 не делится, притом, что левая часть уравнения делится на три при любых значениях переменной y. Следовательно, уравнение в целых числах решений не имеет.

Пример 7. Решить в целых числах x³ — 3y³ — 9z³ = 0.

Решение. 1) Очевидно, что решением уравнения будет тройка чисел (0; 0; 0).

2) Выясним, имеет ли уравнение другие решения. Для этого преобразуем уравнение к виду

Так как правая часть полученного уравнения делится на 3, то и левая обязана делится на три, следовательно, так как 3 — число простое, х делится на 3, т. е. х = 3k, подставим это выражение в уравнение (3): 27k3 = 3y³ + 9z³, откуда

следовательно, y³ делится на 3 и y = 3m. Подставим полученное выражение в уравнение (4): 9k3 = 27m³ + 3z³, откуда

В свою очередь, из этого уравнения следует, что z3 делится на 3, и z = 3n. Подставив это выражение в (5), получим, что k3 должно делиться на 3.

Итак, оказалось, что числа, удовлетворяющие первоначальному уравнению, кратны трём, и сколько раз мы не делили бы их на 3, опять должны получаться числа, кратные трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0) является единственным.

Контрольное задание №1

Представленные ниже задачи являются контрольным заданием №1 для учащихся 9 классов. Решения необходимо оформить в отдельной тетради и выслать по адресу 8, ХКЦТТ, ХКЗФМШ. Для зачета нужно набрать не менее 15 баллов (каждая правильно решенная задача оценивается в 3 балла).

М.9.1.1. Решив задачу, помещенную вначале статьи, определить сколько лет прожил Диофант.

М.9.1.2. Решить уравнения в целых числах

М.9.1.3. Найдите день моего рождения, если сумма чисел равных произведению даты рождения на 12 и номера месяца рождения на 31 равна 380.

М.9.1.4. Кусок проволоки длиной 102 см нужно разрезать на части длиной 15 см и 12 см, так чтобы была использована вся проволока. Как это сделать?

М.9.1.5. Решить уравнения в целых числах

М.9.1.6. Докажите, что уравнение x2 – y2 = 30 не имеет решений в целых числах.

М.9.1.7. Существуют ли целые числа m и n, удовлетворяющие уравнению m2 + 1994 = n2

1. Башмакова, И. Г. Диофант и диофантовы уравнения. – М.: Наука, 1972.

2. Фоминых, Ю. Ф. Диофантовы уравнения //Математика в шк. – 1996. — №6.

3. Школьная энциклопедия. Математика. / под редакцией – М.: Издательство «Большая российская энциклопедия», 1996.

4. Бабинская, И. Л. Задачи математических олимпиад. – М., 1975.

5. Васильев, Н. Б. Задачи Всесоюзных математических олимпиад. – М., 1998.

6. Курляндчик, Л. Метод бесконечного спуска // Приложение к журналу «Квант». 1999. – №3.

7. Яковлев, Г. Н. Всесоюзные математические олимпиады школьников. М., 1992.

8. Серпинский, В. О решении уравнений в целых числах. – М, 1961.

9. Перельман, Я. И. Занимательная алгебра. – М.: Наука, 1975.

Видео:9 класс. Алгебра. Решение уравнений в целых числах.Скачать

9 класс. Алгебра.  Решение уравнений в целых числах.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Уравнение в целых числах.Скачать

Уравнение в целых числах.

Калькулятор онлайн.
Решение показательных уравнений.

Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение

Видео:Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»

Немного теории.

Видео:2 урок. Решение уравнений в целых числах.Скачать

2 урок. Решение уравнений в целых числах.

Показательная функция, её свойства и график

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m

4) (ab) n = a n b n

7) a n > 1, если a > 1, n > 0

8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, ( a neq 1)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, ( a neq 1), не имеет корней, если ( b leqslant 0), и имеет корень при любом b > 0.

3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, ( a neq 1), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, ( a neq 1) равны тогда и только тогда, когда равны их показатели.

Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2

Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2

Решить уравнение 3 х = 7 х
Так как ( 7^x neq 0 ) , то уравнение можно записать в виде ( frac = 1 ), откуда ( left( frac right) ^x = 1 ), х = 0
Ответ х = 0

Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
( left( frac right) ^ = 1 )
x — 2 = 0
Ответ х = 2

Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, ( 3 neq 1), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1

Видео:16. Решение линейных уравнений в целых числах. Часть 1. Алексей Савватеев. 100 уроков математикиСкачать

16. Решение линейных уравнений в целых числах. Часть 1. Алексей Савватеев. 100 уроков математики

Олимпиадные задания. Решение уравнений в целых числах
методическая разработка по алгебре (9, 10, 11 класс) на тему

Решить уравнения в целых числах а 5x 11y 37 9 баллов б 20x 16y 104

В данной работе представлены различные способы решения уравнений в целых числах. Работа может быть использована при подготовке к олимпиадам, на кружковых и факультативных занятиях.

Видео:Уравнение с двумя неизвестными. Решить в целых числах. ЗадачаСкачать

Уравнение с двумя неизвестными. Решить в целых числах. Задача

Скачать:

ВложениеРазмер
aksanova_ii._olimpiadnye_zadaniya.reshenie_uravneniy_v_tselyh_chislah.docx100.62 КБ

Видео:Решите уравнение в целых числах 3x^2+5y^2=345 ✱ Диофантовы уравнения ✱ Как решать?Скачать

Решите уравнение в целых числах 3x^2+5y^2=345 ✱ Диофантовы уравнения ✱ Как решать?

Предварительный просмотр:

МБОУ «Высокогорская средняя общеобразовательная школа №2

Высокогорского муниципального района Республики Татарстан»

Решение уравнений в целых числах

Аксанова Ильсияр Исмагиловна

Учитель математики высшей категории

С. Высокая Гора – 2015 г.

Работа посвящена решению уравнений в целых числах. Актуальность этой темы обусловлена тем, что задачи, основанные на решении уравнений в целых числах, часто встречаются на вступительных экзаменах в высшие учебные заведения и на олимпиадах по математике и на ЕГЭ в старших классах. В школьной программе эта тема рассматривается в ознакомительном порядке. В работе представлены различные способы решения уравнений в целых числах, разобраны конкретные примеры. Данная работа будет полезна учителям старших классов для подготовки к ЕГЭ и олимпиадам.

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми , в честь древнегреческого математика Диофанта Аксандрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

При решении уравнений в целых и натуральных числах можно условно выделить следующие способы решения:

  • способ перебора вариантов;
  • применение алгоритма Евклида;
  • применение цепных дробей;
  • разложения на множители;
  • решение уравнений в целых числах как квадратных относительно какой-либо переменной;
  • метод остатков;
  • метод бесконечного спуска;
  • оценка выражений, входящих в уравнение.

В работе представлены два приложения: п риложение 1. Таблица остатков при делении степеней ( a n : m ); приложение 2. Задачи для самостоятельного решения

1. Способ перебора вариантов.

Пример 1.1. Найти множество всех пар натуральных чисел, которые являются решениями уравнения 49 х + 51 у = 602.

Решение. Выразим из уравнения переменную х через у х = , так как х и у – натуральные числа, то

х = 602 — 51 у ≥ 49, 51 у ≤553, 1≤ у ≤10 .

Полный перебор вариантов показывает, что натуральными решениями уравнения являются х =5, у =7.

2. Применение алгоритма Евклида. Теорема.

Дано уравнение ax+by=c , где a, b, c -целые числа, a и b не равны 0.

Теорема: Если c не делится нацело на НОД( a,b ), то уравнение не разрешимо в целых числах. Если НОД( a,b )=1или c делится на НОД( a,b ), то уравнение разрешимо в целых числах. Если (x 0 , y 0 )- какое-нибудь решение уравнения, то все решения уравнения задаются формулами:

y=y 0 +at , где t — принадлежит множеству целых чисел.

Пример 2.1. Решить уравнение в целых числах 5 х + 7 у = 19

Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

Тогда 5 x 0 + 7 y 0 = 19, откуда

5( х – x 0 ) + 7( у – y 0 ) = 0,

5( х – x 0 ) = –7( у – y 0 ).

Поскольку числа 5 и 7 взаимно простые, то

х – x 0 = 7 k , у – y 0 = –5 k.

Значит, общее решение:

х = 1 + 7 k , у = 2 – 5 k ,

где k – произвольное целое число.

Ответ: (1+7 k ; 2–5 k ), где k – целое число.

Пример 2.2. Решить уравнение 201 х – 1999 у = 12.

Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201 х – 1999 у = 1. Тогда пара чисел

x 0 = 1273·12 = 15276, y 0 = 128·12 = 1536

является решением уравнения 201 х – 1999 у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999 k , у = 1536 + 201 k , где k – целое число,

или, используя, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201, имеем

х = 1283 + 1999 n , у = 129 + 201 n , где n – целое число.

Ответ: (1283+1999 n , 129+201 n ), где n – целое число.

3. Метод остатков.

Этот метод основан на исследовании возможных остатков левой и правой частей уравнения от деления на некоторое фиксированное натуральное число.

Замечание . Говоря строго математическим языком, для решения уравнения в данном случае применяется теория сравнений.

Рассмотрим примеры, которые раскрывают сущность данного метода.

Пример 3.1. Решить уравнение в целых числах x 3 + y 3 = 3333333;

Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в приложении 1), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

Пример 3.2. Решить уравнение в целых числах x 3 + y 3 = 4( x 2 y + xy 2 + 1).

Перепишем исходное уравнение в виде ( x + y ) 3 = 7( x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

Пример 3.3. Решить в целых числах уравнение x 2 + 1 = 3 y .

Решение. Заметим, что правая часть уравнения делится на 3 при любом целом y .

Исследуем какие остатки может иметь при делении на три левая часть этого уравнения.По теореме о делении с остатком целое число х либо делится на 3, либо при делении на три в остатке дает 1 или 2.

Если х = 3 k , то правая часть уравнения на 3 не делится.

Если х = 3 k+ 1, то x 2 + 1= (3 k+ 1) 2 +1=3 m +2, следовательно, опять левая часть на 3 не делится.

Если х = 3 k+ 2, то x 2 + 1= (3 k+ 2) 2 +1=3 m +2, следовательно, и в этом случае левая часть уравнения на три не делится.

Таким образом, мы получили, что ни при каких целых х левая часть уравнения на 3 не делится, при том, что левая часть уравнения делится на три при любых значениях переменной y . Следовательно, уравнение в целых числах решений не имеет.

Ответ: целочисленных решений нет.

Пример 3.4. Решить в целых числах x³ — 3y³ — 9z³ = 0 (1)

Решение. Очевидно, что решением уравнения будет тройка чисел (0; 0; 0).

Выясним, имеет ли уравнение другие решения. Для этого преобразуем уравнение (1) к виду

x ³ = 3 y ³ + 9 z ³ (2)

Так как правая часть полученного уравнения делится на 3, то и левая должна делиться на три, следовательно, так как 3 — число простое, х делится на 3, т.е. х = 3 k , подставим это выражение в уравнение (2), получим:

27 k 3 = 3 y ³ + 9 z ³, откуда

9 k 3 = y ³ + 3 z ³ (3)

следовательно, y ³ делится на 3 и y = 3 m . Подставим полученное выражение в уравнение (3): 9 k 3 = 27 m ³ + 3 z ³, откуда

3 k 3 = 9 m ³ + z ³ (4)

В свою очередь, из этого уравнения следует, что z 3 делится на 3, и z = 3 n . Подставив это выражение в (4), получим, что k 3 должно делиться на 3.

Итак, оказалось, что числа, удовлетворяющие первоначальному уравнению, кратны трём, и сколько раз мы не делили бы их на 3, опять должны получаться числа, кратные трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0) является единственным.

4. Решение уравнений в целых числах сведением их к квадратным.

Пример 4.1. Решить в простых числах уравнение

х 2 – 7 х – 144 = у 2 – 25 у .

Решим данное уравнение как квадратное относительно переменной у . Получим: у = х + 9 или у = 16 – х .

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х , имеем

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

Пример 4.2 . Решить в целых числах уравнение x + y = x 2 – xy + y 2 .

Рассмотрим данное уравнение как квадратное уравнение относительно x :

x 2 – ( y + 1) x + y 2 – y = 0.

Дискриминант этого уравнения равен –3 y 2 + 6 y + 1. Он положителен лишь для следующих значений у : 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х , которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

Пример 4.3 . Решить уравнение в целых числах: 5 х 2 +5 у 2 +8 ху +2 у -2 х +2=0.

Рассмотрим уравнение как квадратное относительно х:

5 х 2 + (8 у — 2) х + 5 у 2 + 2 у + 2 = 0

D = (8 у — 2) 2 — 4·5(5 у 2 + 2 у + 2) = 64 у 2 — 32 у + 4 = -100 у 2 — 40 у – 40 = = -36( у 2 + 2 у + 1) = -36( у + 1) 2

Для того, чтобы уравнение имело решения, необходимо, чтобы D = 0.

-36( у + 1) 2 = 0. Это возможно при у = -1, тогда х = 1.

5. Разложение на множители .

Пример 5.1. Решить в целых числах уравнение x 2 – xy – 2 y 2 = 7.

Разложим левую часть на множители ( x – 2 y )( x + y ) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2 y = 7, x + y = 1;

2) x – 2 y = 1, x + y = 7;

3) x – 2 y = –7, x + y = –1;

4) x – 2 y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

Пример 5.2 . Решить уравнение в целых числах: х 2 + 23 = у 2

Решение. Перепишем уравнение в виде:

у 2 — х 2 = 23, ( у — х )( у + х ) = 23

Так как х и у – целые числа и 23 – простое число, то возможны случаи:

Решая полученные системы, находим:

Пример 5.3 . Решить уравнение в целых числах y 3 — x 3 = 91.

Решение. Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

( y — x )( y 2 + xy + x 2 ) = 91

Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

Проводим исследование. Заметим, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 — 2| y || x | + x 2 = (| y | — | x |) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение равносильно совокупности систем уравнений:

Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Пример 5.4 . Решить в целых числах уравнение x + y = xy .

Решение. Перенесем все члены уравнения влево и к обеим частям полученного уравнения прибавим (–1)

x + y – xy – 1 = – 1

Сгруппируем первое – четвертое и второе – третье слагаемые и вынесем общие множители, в результате получим уравнение: ( x — 1)( y — 1) = 1

Произведение двух целых чисел может равняться 1 в том и только в том случае, когда оба этих числа равны или 1, или (–1). Записав соответствующие системы уравнений и, решив их, получим решение исходного уравнения.

Пример 5.5 . Доказать, что уравнение ( x — y ) 3 + ( y — z ) 3 + ( z — x ) 3 = 30 не имеет решений в целых числах.

Решение. Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

( x — y )( y — z )( z — x ) = 10

Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

6. Метод бесконечного спуска.

Метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.

Пример 6.1 . Решить уравнение в целых числах 5 x + 8 y = 39.

Выберем неизвестное, имеющее наименьший коэффициент , и выразим его через другое неизвестное: . Выделим целую часть: Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 – 3 y без остатка делится на 5.

Введем дополнительную целочисленную переменную z следующим образом: 4 –3 y = 5 z . В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами. Решать его будем уже относительно переменной y , рассуждая аналогично: . Выделяя целую часть, получим:

Рассуждая аналогично предыдущему, вводим новую переменную

Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z : = . Требуя, чтобы было целым, получим: 1 – u = 2 v , откуда u = 1 – 2 v . Дробей больше нет, спуск закончен.

Теперь необходимо «подняться вверх». Выразим через переменную v сначала z , потом y и затем x :

z = = = 3 v – 1; = 3 – 5 v .

Формулы x = 3+8 v и y = 3 – 5 v , где v – произвольное целое число, представляют общее решение исходного уравнения в целых числах.

Ответ: x = 3+8 v и y = 3 – 5 v.

7. Оценка выражений, входящих в уравнение.

Пример 7.1. Решить в целых числах уравнение ( х 2 + 4)( у 2 + 1) = 8ху

Решение. Заметим, что если ( х ;у ) – решение уравнения, то (- х ;- у ) – тоже решение.

И так как х = 0 и у = 0 не являются решением уравнения, то, разделив обе части уравнения на ху, получим:

Пусть х > 0, у > 0, тогда, согласно неравенству Коши,

тогда их произведение ( х + )( у + ) = 4·2 = 8, значит, х + = 4 и у + = 2.

Отсюда находим х = 2 и у = 1 – решение, тогда х = -2 и у = -1 – тоже решение.

Пример 7.2 . Решить уравнение в целых числах

x 2 + 13 y 2 – 6 xy = 100

Решение . x 2 + 13 y 2 –6 xy= 100 ↔ ( x- 3 y ) 2 + 4 y 2 = 100 . Так как ( x- 3 y ) 2 ≥ 0 , то 4 y 2 ≤ 100 , или │ 2 y│≤ 10 . Аналогично, в силу 4 y 2 ≥ 0 должно выполняться │x- 3 y│≤ 10 .

🎬 Видео

Два уравнения в целых числахСкачать

Два уравнения в целых числах

Решить уравнение в целых числахСкачать

Решить уравнение в целых числах

Решите уравнение в целых числах ★ √x+√y=√50 ★ Как решать диофантовы уравнения?Скачать

Решите уравнение в целых числах ★ √x+√y=√50 ★ Как решать диофантовы уравнения?

Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Решите уравнение в целых числахСкачать

Решите уравнение в целых числах
Поделиться или сохранить к себе: