Здравствуйте, уважаемые читатели. В этой небольшой статье речь пойдет о работе с символьными переменными в Matlab. На простых примерах мы разберем преобразование символьных выражений, а также символьное дифференцирование и интегрирование.
- Создание символьного выражения в Matlab
- Преобразования символьных выражений в Matlab
- Вычисление значения символьных выражений в Matlab
- Символьное дифференцирование в Matlab
- Символьное интегрирование в Matlab
- Другие функции
- Заключение
- Основы работы в символьных переменных в системе MATLAB
- MATLAB — алгебра
- Решение основных алгебраических уравнений в MATLAB
- Решение основных алгебраических уравнений в октаве
- Решение квадратичных уравнений в MATLAB
- Решение квадратичных уравнений в октаве
- Решение уравнений высшего порядка в MATLAB
- Решение уравнений высшего порядка в октаве
- Решение системы уравнений в MATLAB
- Решающая система уравнений в октаве
- Разложение и сбор уравнений в MATLAB
- Расширяя и собирая уравнения в октаве
- Факторизация и упрощение алгебраических выражений
- пример
- 💡 Видео
Создание символьного выражения в Matlab
Иногда символьные выражения крайне необходимы, именно поэтому важно уметь их объявлять в Matlab. Обычно используют два способа. Первый — использование оператора syms.
Таким простым способом мы создали две символьные переменные. Пока они ничего не делают и не представляют какой либо ценности, но чуть позже мы увидим, что они могут быть полезны.
Второй способ — использование команды sym.
При ее использовании, можно сразу задать функцию, полином или выражение:
Символьные выражения полезны тем, что вычисления с ними производятся без погрешностей.
Преобразования символьных выражений в Matlab
Возможны несколько типов преобразований:
- Функция раскрытия скобок expand
Для примера зададим символьное выражение и попробуем раскрыть скобки:
- Функция упрощения simplify
Данная функция помогает упростить символьное выражение в Matlab. Возьмем для примера такое выражение.
- Функция разложения на множители factor
Данная функция помогает преобразовать символьное выражение, например, в полином в Matlab. Иногда, это бывает очень важно и необходимо.
Вычисление значения символьных выражений в Matlab
Конечно, символьные выражения это интересный инструмент в Matlab, но хотелось бы находить значение этого выражения при каких-то заданных значениях переменной.
Для этого можно воспользоваться несколькими функциями. Сначала нужно заменить все переменные на число с помощью оператора subs. Затем перевести полученное выражение в числовое с помощью оператора double. Разберем пример:
Стоит отметить, что после выполнения оператора subs, выражение все еще остается символьным. Поэтому далее выполняется оператор double.
Если же у функции несколько переменных, то придется использовать subs несколько раз.
Символьное дифференцирование в Matlab
На нашем сайте уже были статьи по численному дифференцированию в среде Matlab, но любой численный метод может давать погрешности. А вычисление в символьном виде может быть очень полезным и точным.
Итак, символьное дифференцирование осуществляется оператором diff. При вызове функции следует указать переменную, по которой будет производиться дифференцирование.
В этом примере функция зависит от одной переменной, поэтому производная считается по ней автоматически. Если нужно вычислить вторую производную:
Теперь посмотрим на функцию от нескольких переменных:
Очевидно, что после получения производных, с ними можно выполнить все действия, описанные выше.
Символьное интегрирование в Matlab
Наряду с дифференцированием, в Matlab можно выполнять символьное интегрирование. Иногда это бывает удобнее, чем численное интегрирование. Символьное интегрирование в Matlab выполняется оператором int.
Оператор выполняется практически также, как и оператор дифференцирования.
Также, возможен расчет определенного интеграла:
Другие функции
В Matlab реализовано множество функций для работы с символьными вычислениями. Помимо тех, что были рассмотрены, следует выделить следующие функции:
- ezplot(f) — построение графика функции
- solve(f) — решение символьных уравнений и систем
- taylor(f) — разложение символьной функции в ряд тейлора
- limit(f) — вычисление предела
Эти и многие другие функции в Matlab имеют свои опции и параметры. Очевидно, что среда Matlab дает широкие возможности разработчику при работе с символьными вычислениями.
Заключение
На этом статья подходит к концу. Символьные вычисления в Matlab являются дополнительным инструментом разработчика, и с помощью этой статьи можно ознакомиться с этим инструментом.
Все примеры очень просты и в исходниках не нуждаются. На этом все, встретимся в следующей статье.
Видео:Решение произвольных уравнений. Методы вычислений в MATLAB. Часть 1. Урок 61Скачать
Основы работы в символьных переменных в системе MATLAB
Цель работы:изучить систему команд расширения MATLAB (Toolbox) для работы с символьными переменными Symbolic Math.
Расширение (Toolbox) Symbolic Math предназначено для работы с математическими выражениями в символьных переменных, то есть в привычном для нас виде, когда переменная не заменяется ее числовым значением, может входить в разные функции, выражения и уравнения, а также преобразовываться в любых доступных формах с помощью известных алгебраических преобразований. Кроме того, указанное расширение дает возможность символьного интегрирования и дифференцирования, с последующей подстановкой числовых значений, упрощением и преобразованием вновь получаемых математических зависимостей.
Основные команды, используемые для работы с символьными переменными:
1. Общие операции:
— syms – создает символьные переменные упрощенным способом. Формат команды: syms vol1 vol2 …, где vol1, vol2 и т.д. – имена создаваемых символьных переменных. Для создания символьных переменных может также применяться команда sym, которая применяется в следующем формате: vol1 = sym(‘vol1’). Таким образом, в скобках, заключенное в апострофы, задается имя создаваемой переменной. Такая запись является чересчур громоздкой, поэтому рекомендуется применять упрощенную команду syms, при этом, создаваемые переменные просто перечисляются через пробел после самой команды. Ставить знак «;» после команды syms не требуется;
— pretty – выдает символьное выражение в многоуровневом представлении (в привычном нам виде). Формат записи команды: pretty(vol), где vol – имя переменной, в которой хранится символьное выражение. Например, символьное выражение:
A = (2*x+y*x*2+y^2)/(2*a+3*b) в линейной форме записи, будет преобразовано командой pretty в:
2. Решение уравнений:
— solve – решение алгебраических уравнений, в том числе их систем. Формат записи:
solve (‘eqn1′,’eqn2’. ‘eqnN’,’var1,var2. varN’), где eqn1, eqn2 и т.д. – уравнения, решения которых нужно найти.
Таким образом, в качестве аргументов этой функции используются уравнения, заключенные в апострофы и разделенные запятыми. После уравнений приводится список переменных, которые нужно определить. Если уравнение одно и содержит одну переменную указывать относительно какой переменной его решать не требуется;
— dsolve – решение дифференциальных уравнений. Формат записи:
— simplify – упрощение выражения;
— expand – раскрывает все скобки в выражении;
— collect – выносит общий множитель за скобки;
— subs – подстановка числовых значений вместо символьных.
Формат записи для всех команд одинаков:
vol2 = command(vol1), где vol1 – преобразуемая переменная, vol2 – переменная, в которую будет записан результат преобразования, command – одна из указанных выше команд.
— diff – дифференцирование выражения. Формат записи:
diff(vol1, n), где n – порядок дифференцирования;
— int – интегрирование выражения. Формат записи: int(vol1,a,b), где a и b – верхний и нижний пределы интегрирования, в случае нахождения определенного интеграла;
— limit – нахождение предела выражения. Формат записи:
limit(vol1,x,a,’ident’), где x – имя переменной которая стремится к пределу, a – численное значение, к которому стремится переменная x, ident – может принимать значения left и right, т.е. это указание, в какую сторону стремится величина x – направление для односторонних пределов.
Пример №1: Необходимо задать выражение A = (x*2+y^3-3*z)*3*x+4*y^3, упростить его и определить значение A в точке (1,2,1).
Выполняется следующим образом:
% после выполнения этой команды в рабочей области (workspace появятся три символьные переменные x, y и z
% результат выполнения команды:
% показывает как выражение было занесено в переменную А. В отдельных случаях, когда возможно упростить вводимое выражение, оно будет упрощено и выдано на экран уже в упрощенном виде. Как видно из результата применения команды, все составляющие в скобке были помножены на 3.
% для дополнительного контроля можно применить команду
% результат ее применения:
% (6 x + 3 y — 9 z) x + 4 y
% раскрываем скобки, запоминаем результат в переменной А1
% результат: A1 = 6*x^2+3*x*y^3-9*x*z+4*y^3
% группируем переменные в выражении А1 и выносим общие множители за скобки. Результат: A2 = 6*x^2+(3*y^3-9*z)*x+4*y^3
% задаем значения переменных x, y и z соответственно заданной точке (1,2,1). при этом в рабочей области появятся уже числовые переменные с соответствующими значениями.
% подставляем численные значения в наше выражение, получаем результат:
% Возможно присваивание численных значений только части символьных переменных выражения. Для иллюстрации этого вернем переменные x, y и z в символьный вид:
% результат в этом случае: A3 = 62-9*z
Пример №2: Необходимо решить независимые уравнения
x+20=10, 3*x^2+2*x-10=0 и 4*x+5*x^3=-12.
Выполняется следующим образом:
% MATLAB выдал два корня уравнения в неупрощенном виде, для их упрощения необходимо повторить ответ в командном окне (скопировать его и заново ввести в командное окно)
Пример №3: Необходимо решить независимые уравнения
x+y=35, 3*x^2+2*y=0 и 4*x+5*y^3=-12 относительно переменной x.
Выполняется следующим образом:
Пример №4: Необходимо найти неопределенный интеграл и дифференциал выражения 3*a^5*sin(a).
Выполняется следующим образом:
Пример №5: Необходимо найти определенный интеграл выражения 3*a^5*sin(a), для пределов от -10 до 100.
Выполняется следующим образом:
Пример №6: Необходимо продифференцировать выражение 3*a^5*sin(a) четыре раза.
Выполняется следующим образом:
Пример №7: Необходимо получить передаточную функцию трех последовательно соединенных звеньев: , и . А также определить передаточную функцию замкнутой системы, состоящей из звеньев W1, W2 и W3 – в прямой ветви, и звена – в обратной связи, при условии отрицательной обратной связи.
Выполняется следующим образом:
syms k1 k2 k3 T1 T2 T3 p
% передаточная функция последовательно соединенных звеньев:
Видео:2 - Решениt систем линейных алгебраических уравнений (СЛАУ) с помощью Matlab.Скачать
MATLAB — алгебра
До сих пор мы видели, что все примеры работают как в MATLAB, так и в его GNU, альтернативно называемом Octave. Но для решения основных алгебраических уравнений и MATLAB, и Octave немного отличаются, поэтому мы постараемся охватить MATLAB и Octave в отдельных разделах.
Мы также обсудим факторизацию и упрощение алгебраических выражений.
Видео:Символьные и численные расчеты в MATLABСкачать
Решение основных алгебраических уравнений в MATLAB
Функция решения используется для решения алгебраических уравнений. В простейшем виде функция решения принимает в качестве аргумента уравнение, заключенное в кавычки.
Например, давайте решим для х в уравнении х-5 = 0
MATLAB выполнит приведенный выше оператор и вернет следующий результат —
Вы также можете вызвать функцию решения как —
MATLAB выполнит приведенный выше оператор и вернет следующий результат —
Вы можете даже не включать правую часть уравнения —
MATLAB выполнит приведенный выше оператор и вернет следующий результат —
Если в уравнение входит несколько символов, то по умолчанию MATLAB предполагает, что вы решаете для x, однако функция решения имеет другую форму —
где вы также можете упомянуть переменную.
Например, давайте решим уравнение v — u — 3t 2 = 0, для v. В этом случае мы должны написать —
MATLAB выполнит приведенный выше оператор и вернет следующий результат —
Видео:Как в MATLAB Simulink моделировать уравнения (Структурная схема САУ)Скачать
Решение основных алгебраических уравнений в октаве
Функция корней используется для решения алгебраических уравнений в Octave, и вы можете написать приведенные выше примеры следующим образом:
Например, давайте решим для х в уравнении х-5 = 0
Octave выполнит приведенный выше оператор и вернет следующий результат —
Вы также можете вызвать функцию решения как —
Octave выполнит приведенный выше оператор и вернет следующий результат —
Видео:MatLab. 6.1. Решение уравненийСкачать
Решение квадратичных уравнений в MATLAB
Функция решения также может решать уравнения более высокого порядка. Он часто используется для решения квадратных уравнений. Функция возвращает корни уравнения в массиве.
В следующем примере решается квадратное уравнение x 2 -7x +12 = 0. Создайте файл сценария и введите следующий код —
Когда вы запускаете файл, он показывает следующий результат —
Видео:1 - Решение систем нелинейных уравнений в MatlabСкачать
Решение квадратичных уравнений в октаве
В следующем примере решается квадратное уравнение x 2 -7x +12 = 0 в октаве. Создайте файл сценария и введите следующий код —
Когда вы запускаете файл, он показывает следующий результат —
Видео:Решение уравнений и систем. Символьные вычисления. Урок 149Скачать
Решение уравнений высшего порядка в MATLAB
Функция решения также может решать уравнения более высокого порядка. Например, давайте решим кубическое уравнение как (x-3) 2 (x-7) = 0
MATLAB выполнит приведенный выше оператор и вернет следующий результат —
В случае уравнений более высокого порядка корни длинные, содержащие много членов. Вы можете получить числовое значение таких корней, преобразовав их в двойные. В следующем примере решается уравнение четвертого порядка x 4 — 7x 3 + 3x 2 — 5x + 9 = 0.
Создайте файл сценария и введите следующий код —
Когда вы запускаете файл, он возвращает следующий результат —
Обратите внимание, что последние два корня являются комплексными числами.
Видео:Решение системы нелинейных уравнений. Урок 139Скачать
Решение уравнений высшего порядка в октаве
В следующем примере решается уравнение четвертого порядка x 4 — 7x 3 + 3x 2 — 5x + 9 = 0.
Создайте файл сценария и введите следующий код —
Когда вы запускаете файл, он возвращает следующий результат —
Видео:MatLab. 8.8. Решение большой системы нелинейных уравненийСкачать
Решение системы уравнений в MATLAB
Функция решения также может быть использована для генерации решений систем уравнений, включающих более одной переменной. Давайте рассмотрим простой пример, чтобы продемонстрировать это использование.
Давайте решим уравнения —
Создайте файл сценария и введите следующий код —
Когда вы запускаете файл, он показывает следующий результат —
Таким же образом вы можете решать большие линейные системы. Рассмотрим следующую систему уравнений —
Видео:MatLab для новичков. Решаем case с квадратным уравнением.Скачать
Решающая система уравнений в октаве
У нас есть немного другой подход к решению системы ‘n’ линейных уравнений с ‘n’ неизвестными. Давайте рассмотрим простой пример, чтобы продемонстрировать это использование.
Давайте решим уравнения —
Такая система линейных уравнений может быть записана в виде единого матричного уравнения Ax = b, где A — матрица коэффициентов, b — вектор столбцов, содержащий правую часть линейных уравнений, а x — вектор столбцов, представляющий решение как показано в программе ниже —
Создайте файл сценария и введите следующий код —
Когда вы запускаете файл, он показывает следующий результат —
Таким же образом, вы можете решить большие линейные системы, как указано ниже —
Видео:MatLab. Решение дифференциального уравнения.Скачать
Разложение и сбор уравнений в MATLAB
Функция расширения и сбора расширяет и собирает уравнение соответственно. Следующий пример демонстрирует понятия —
Когда вы работаете со многими символическими функциями, вы должны объявить, что ваши переменные являются символическими.
Создайте файл сценария и введите следующий код —
Когда вы запускаете файл, он показывает следующий результат —
Видео:ТАУ. Matlab/SIMULINK Фазовые портреты систем нелинейных диф. уравненийСкачать
Расширяя и собирая уравнения в октаве
Вам нужно иметь символьный пакет, который обеспечивает расширение и функцию сбора для расширения и сбора уравнения, соответственно. Следующий пример демонстрирует понятия —
Когда вы работаете со многими символическими функциями, вы должны объявить, что ваши переменные являются символическими, но у Octave другой подход к определению символических переменных. Обратите внимание на использование Sin и Cos , которые также определены в символической упаковке.
Создайте файл сценария и введите следующий код —
Когда вы запускаете файл, он показывает следующий результат —
Видео:MatLab. 9.5f. Функция решения алгебраических уравнений – solveСкачать
Факторизация и упрощение алгебраических выражений
Факторная функция разлагает выражение, а функция упрощения упрощает выражение. Следующий пример демонстрирует концепцию —
пример
Создайте файл сценария и введите следующий код —
Когда вы запускаете файл, он показывает следующий результат —
💡 Видео
Семинар 7. Символьные преобразования в MATLAB. 01.04.2021Скачать
ТАУ. Matlab/SIMULINK Фазовые портреты нелинейных и линейных диф. уравненийСкачать
MatLab. 7.9. Системы дифференциальных уравненийСкачать
Решение систем Д/У: 1. Знакомство с функциями odeXYСкачать
Численное решение системы дифференциальных уравнений(задачи Коши)Скачать
Решение двух систем уравнений в MatLabСкачать
Решение дифференциальных уравнений и систем. Урок 150Скачать