Решить уравнение tg5x tg8x 1

Задача 26949 4.40) tg2xtg7x=1.

Условие

Решить уравнение tg5x tg8x 1

Все решения

Решить уравнение tg5x tg8x 1

tg2x*tg7x=1
ОДЗ:
2х ≠ (Pi/2)+Pik , k ∈ Z ⇒ x ≠ (Pi/4)+(Pi/2)k , k ∈ Z
7x ≠ (Pi/2)+Pin , n ∈ Z ⇒ x ≠ (Pi/14)+(Pi/7)n , n ∈ Z

(sin2x*sin7x-cos2xcos7x)=0
-cos(2x+7x)=0
cos9x=0
9x=(Pi/2)+Pim, m ∈ Z
х=(Pi/18)+(Pi/9)m, m ∈ Z

Найдем при каких k, m и n выполняются условия
(Pi/18)+(Pi/9)m ≠ (Pi/4)+(Pi/2)k , m, k ∈ Z
(Pi/18)+(Pi/9)m≠ (Pi/14)+(Pi/7)n , m, n ∈ Z

(1/18)+(m/9) ≠ (1/4)+(k/2)
Умножаем на 36
2+4m≠9+18k
4m≠7+18k, m, k ∈ Z
2*(2m-9k)≠7
нет таких к и m
множества (Pi/18)+(Pi/9)m и (Pi/4)+(Pi/2)k ( m, k ∈ Z) не имеют пересечений

(Pi/18)+(Pi/9)m≠ (Pi/14)+(Pi/7)n , m, n ∈ Z
Умножаем на 126
7+14m ≠ 9+18n
14m≠2+18n,
2*(7m-9k)≠2
7m-9n≠1
7m≠1+9n ( m, n ∈ Z)
Например,
m=4; n=3
m=13; n=10
и т.д

Убедились, что такие пересечения есть. Поэтому в ответе следует написать ответ и ограничения к ответу.

О т в е т.
(Pi/18)+(Pi/9)m, m ∈ Z
7m≠1+9n ( m, n ∈ Z)
или даже в таком виде
(Pi/18)+(Pi/9)m, m ∈ Z
(Pi/18)+(Pi/9)m≠ (Pi/14)+(Pi/7)n , m, n ∈ Z

Видео:Решить неравенство tg xСкачать

Решить неравенство tg x

Решить уравнение tg5x tg8x 1

40. Решите уравнение: tgx·tg3x = -1.

В первую очередь определяем область допустимых значений (ОДЗ):

Тангенс для 90° и 270° (повторяясь каждые 360°) не существует, поэтому х ≠ π/2 + πk и 3х ≠ π/2 + πk, k Є Z.

tgα=sinα
cosα

Воспользуемся свойством пропорции, по которому произведение крайних членов равно произведению средних:

Переносим всё в левую часть:

Теперь можно применить формулу косинуса разности двух углов:

Таким образом (k Є Z):

а) тангенс 90° (повторяясь каждые 180°) не определен, т.к. tgα = sinα / cosα, а cos90° = 0, но на нуль делить нельзя.

б) котангенс (повторяясь каждые 180°) не определен, т.к. сtgα = cosα = cos / sinα, а sin0° = 0, но на нуль делить нельзя.

Если вы заметили орфографическую ошибку, пожалуйста, выделите ее мышью и нажмите Ctrl+Enter

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Калькулятор онлайн.
Решение тригонометрических уравнений.

Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое уравнение
Решить уравнение

Видео:Решите уравнение: tg пx/4 = -1 В ответе напишите наибольший отрицательный корень.Скачать

Решите уравнение: tg пx/4 = -1 В ответе напишите наибольший отрицательный корень.

Немного теории.

Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Тригонометрические уравнения

Видео:Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать

Тригонометрические функции, y=tgx и y=ctgx,  их свойства и графики. 10 класс.

Уравнение cos(х) = а

Из определения косинуса следует, что ( -1 leqslant cos alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.

Уравнение cos x = а, где ( |a| leqslant 1 ), имеет на отрезке ( 0 leqslant x leqslant pi ) только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если a

Видео:Решение уравнений вида tg x = a и ctg x = aСкачать

Решение уравнений вида tg x = a и ctg x = a

Уравнение sin(х) = а

Из определения синуса следует, что ( -1 leqslant sin alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.

Уравнение sin х = а, где ( |a| leqslant 1 ), на отрезке ( left[ -frac; ; frac right] ) имеет только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если а

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Уравнение tg(х) = а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале ( left( -frac; ; frac right) ) только один корень. Если ( |a| geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right) ); если а

Видео:Теорема Виета. 8 класс.Скачать

Теорема Виета. 8 класс.

Решение тригонометрических уравнений

Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Уравнения, сводящиеся к квадратным

Решить уравнение 2 cos 2 (х) — 5 sin(х) + 1 = 0

Заменяя cos 2 (х) на 1 — sin 2 (х), получаем
2 (1 — sin 2 (х)) — 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) — 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y — 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = — 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; ( x = (-1)^n text(0,5) + pi n = (-1)^n frac + pi n, ; n in mathbb )
Ответ ( x = (-1)^n frac + pi n, ; n in mathbb )

Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) — 4 = 0

Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 — sin 2 (6х)) + 4 sin(6х) — 4 = 0 => 3 sin 2 (6х) — 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 — 4y +1 =0, откуда y1 = 1, y2 = 1/3

Видео:ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Уравнение вида a sin(x) + b cos(x) = c

Решить уравнение 2 sin(x) + cos(x) — 2 = 0

Используя формулы ( sin(x) = 2sinfrac cosfrac, ; cos(x) = cos^2 frac -sin^2 frac ) и записывая правую часть уравпения в виде ( 2 = 2 cdot 1 = 2 left( sin^2 frac + cos^2 frac right) ) получаем

Поделив это уравнение на ( cos^2 frac ) получим равносильное уравнение ( 3 text^2frac — 4 textfrac +1 = 0 )
Обозначая ( textfrac = y ) получаем уравнение 3y 2 — 4y + 1 = 0, откуда y1=1, y1= 1/3

В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях ( a neq 0, ; b neq 0, ; c neq 0, ; c^2 leqslant b^2+c^2 ) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на ( sqrt ):

Решить уравнение 4 sin(x) + 3 cos(x) = 5

Здесь a = 4, b = 3, ( sqrt = 5 ). Поделим обе части уравнения на 5:

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Решить уравнение sin(2х) — sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) — sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x — 1) = 0

Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х — х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0

Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) — sin 2 (x), то
cos(2x) = 1 — sin 2 (x) — sin 2 (x), cos(2x) = 1 — 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 — cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 — cos(2x)) + 2 (1 — cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0

🎦 Видео

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

27. Вычисление предела функции №1. Примеры 1-4Скачать

27. Вычисление предела функции №1. Примеры 1-4

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Как решать квадратные уравнения без дискриминантаСкачать

Как решать квадратные уравнения без дискриминанта

10 класс. Решение уравнений tg x =aСкачать

10 класс. Решение уравнений tg x =a

Решите уравнение ➜ e^x=x ➜ Как решать такое уравнение?Скачать

Решите уравнение ➜ e^x=x ➜ Как решать такое уравнение?

Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать

Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетитор
Поделиться или сохранить к себе: