Видео:Сумма числового ряда n^2/2^nСкачать

Результат
Примеры нахождения суммы ряда
- Сумма степенного ряда
- Факториал
Указанные выше примеры содержат также:
- квадратные корни sqrt(x),
кубические корни cbrt(x) - тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
- обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x) - натуральные логарифмы ln(x),
десятичные логарифмы log(x) - гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x) - обратные гиперболические функции:
asinh(x), acosh(x), atanh(x), actanh(x) - число Пи pi
- комплексное число i
Правила ввода
Можно делать следующие операции
2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5
Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:
Видео:Математика без Ху!ни. Вычисление суммы рядаСкачать

Сумма ряда
Содержание:
Понятие суммы ряда
Постановка задачи. Найти сумму ряда
где 
План решения. Суммой ряда 


где
1. По условию задачи
Если корни знаменателя различаются на целое число, т.е. 




По этой ссылке вы найдёте полный курс лекций по высшей математике:
2. Разлагаем общий член ряда на элементарные дроби:
и выписываем несколько членов ряда так, чтобы было видно, какие слагаемые сокращаются при вычислении частичных сумм ряда.
3. Находим 

сократив соответствующие слагаемые.
4. Вычисляем сумму ряда по формуле (1)
и записываем ответ.
Пример:
Найти сумму ряда
Решение:
1. Корни знаменателя 




2. Разлагаем общий член ряда на элементарные дроби
и выписываем несколько членов ряда:
3. Сокращая все слагаемые, какие возможно, находим 
4. Вычисляем сумму ряда по формуле (1):
Ответ:
Возможно вам будут полезны данные страницы:
Вычисление суммы ряда почленным интегрированием
Постановка задачи. Найти сумму функционального ряда вида
и указать область сходимости ряда к этой сумме.
План решения.
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством
Если 

2. Делаем в исходном ряде замену 
с областью сходимости 
3. Известна формула для вычисления суммы членов бесконечно убывающей геометрической прогрессии
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке
, целиком принадлежащем интервалу сходимости, и используя формулу (2), получаем
Заметим, что так как ряд (1) сходится в граничной точке 
6. Вычисляем интеграл, делаем замену 

Замечание. Если ряд имеет вид
то применяем теорему о почленном интегрировании степенного ряда дважды или разлагаем дробь на элементарные:
и вычисляем сумму каждого ряда почленным интегрированием.
Пример:
Найти сумму ряда
и указать область сходимости ряда к этой сумме.
Решение:
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством
В граничных точках при 


Следовательно, данный ряд сходится при всех 
2. Сделаем замену 
3. Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке 
Заметим, что так как ряд (1) сходится в граничной точке 

6. Заменяя 

Ответ.
Вычисление суммы ряда почленным дифференцированием
Постановка задачи. Найти сумму функционального ряда вида
и указать область сходимости ряда к этой сумме.
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством
Если 

2. Делаем в исходном ряде замену 
Следовательно, достаточно найти суммы рядов

3. Известна формула для суммы членов бесконечно убывающей геометрической прогрессии
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя формулу (1), получаем
6. Вычисляем производную и делаем замену 

Замечание. Если ряд имеет вид
то вычисляем сумму трех рядов, причем при вычислении суммы ряда
применяем теорему о почленном дифференцировании степенного ряда дважды.
Пример:
Найти сумму ряда
и указать область сходимости ряда к этой сумме.
Решение:
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством 



2. Делаем в исходном ряде замену 
Следовательно, достаточно найти суммы рядов
3. Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии:
Следовательно, 

4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя формулу (2), получаем
Заменяя 

Ответ.
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Сходимость по признаку Даламбера и сумма рядаСкачать

Высшая математика
- Примеры решения рядов
Формулы и уравнения рядов здесь.
Пример. Исследование на сходимость и сумма ряда.
Дано: ряд 
Найти: сумму ряда в случае его сходимости.
Решение.
Представим члены ряда в виде суммы двух слагаемых:


Получается, что n-я частичная сумма ряда может быть записана в виде:
Отсюда следует, что 
Ряд сходится. Сумма ряда равна 
Пример. Необходимый признак сходимости рядов.
Дано: ряд 
Найти:
Проверить выполнение необходимого признака сходимости рядов.
Решение.
Необходимый признак сходимости рядов заключается в том, что если числовой ряд 

Как следствие, если 

Для данного в задаче числового ряда:

Примеры. Достаточные признаки сходимости положительных рядов.
Дано: ряды
1) 
2) 
3) 
4) 
5) 
6) 
Найти:
Исследовать ряды на сходимость.
Решение.
1) Исходя из того, что 



2) Исходя из того, что если выполняются условия: ln n ≥ 0 при n ≥ 1, то 

Обобщенный гармонический ряд 

3) Из ряда 


Заданный ряд и ряд 

Геометрический ряд 

4) Из ряда 


Порядок 
6) Из ряда 


Порядок 
📸 Видео
Сходимость и сумма ряда 1/n*(n+1)Скачать

Найти сумму рядаСкачать

1. Числовой ряд. Определение сходимости. Сумма ряда. #neliseeva #исследоватьрядСкачать

Сравнима ли сумма ряда с вашими знаниями?Скачать

Дифференциальное уравнение ведет к разложению в ряд Тейлора и сумме ряда?Скачать

Гармонический ряд. Найти суммуСкачать

Математика без Ху!ни. Ряды. Часть 1. Сумма ряда. Сходимость. Геометрическая прогрессия.Скачать

Арифметическая прогрессия 9 класс. Формулы, о которых вы не знали | МатематикаСкачать

Числовые ряды-3. Как находить сумму рядаСкачать

Что такое знак СУММЫ и как он работает?Скачать

Как найти сумму ряда?Скачать

Сумма ряда с числами Фибоначчи и факториаломСкачать

Ряд Фурье поможет найти сумму ряда с функцией БесселяСкачать

Ряд Фурье для функции x^2 и нахождение суммы трех числовых рядов.Скачать

Найти сумму ряда применяя почленное интегрированиеСкачать

Найдите сумму числового рядаСкачать

#231. Савватеев уничтожает ряд обратных квадратов!Скачать





















, целиком принадлежащем интервалу сходимости, и используя формулу (2), получаем


































