О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
- Понятие уравнения
- Какие бывают виды уравнений
- Как решать простые уравнения
- Примеры линейных уравнений
- Тренажер по теме «Решение уравнений» 6 класс
- Краткое описание документа:
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Решение линейных уравнений. 6-й класс
- Ход урока
- I. Проверка предыдущего домашнего задания.
- II. Повторение теоретического материала.
- III. Устные задания по слайдам.
- IV. Новая тема. Решение линейных уравнений.
- 📸 Видео
Видео:Решение уравнений, 6 классСкачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Вычитание рациональных чисел . Решение уравнений . 6 класс .Скачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Видео:Решить уравнение - Математика - 6 классСкачать
Тренажер по теме «Решение уравнений» 6 класс
Краткое описание документа:
Данный методический материал разработан для отработки умений решать уравнения, используя свойства уравнений, умений исследовать уравнения, умений строить логические рассуждения и делать выводы.
Тренажер содержит 3 варианта по 12 заданий в каждом.
Данный тренажер может использоваться как материал для самостоятельной работы.
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 572 802 материала в базе
Материал подходит для УМК
«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С.
§ 41. Решение уравнений
Другие материалы
- 07.05.2019
- 714
- 21
- 20.04.2019
- 457
- 11
- 02.04.2019
- 672
- 5
- 17.03.2019
- 693
- 12
- 16.02.2019
- 851
- 2
- 15.01.2019
- 1156
- 3
- 08.01.2019
- 290
- 0
- 05.12.2018
- 310
- 2
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 12.05.2019 38277
- DOCX 72.5 кбайт
- 2909 скачиваний
- Рейтинг: 4 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Ткачева Ирина Викторовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 4 года и 7 месяцев
- Подписчики: 2
- Всего просмотров: 102904
- Всего материалов: 9
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:6 класс. Решение уравнений с модулями.Скачать
Решение линейных уравнений. 6-й класс
Разделы: Математика
Класс: 6
Цели урока:
- повторить правила раскрытия скобок и приведения подобных слагаемых;
- ввести определение линейного уравнения с одним неизвестным;
- познакомить учащихся со свойствами равенств;
- научить решать линейные уравнения;
- научить решать задачи на «было − стало».
Оборудование: компьютер, проектор.
Видео:Решить уравнение с дробями - Математика - 6 классСкачать
Ход урока
I. Проверка предыдущего домашнего задания.
II. Повторение теоретического материала.
- Как найти неизвестное слагаемое? [От суммы отнять известное слагаемое]
- Как найти неизвестное уменьшаемое? [К вычитаемому прибавить разность]
- Как найти неизвестное вычитаемое? [От уменьшаемого отнять разность]
- Как найти неизвестный множитель? [Произведение разделить на известный множитель]
- Как найти неизвестное делимое? [Делитель умножить на частное]
- Как найти неизвестный делитель? [Делимое разделить на частное]
- Как раскрыть скобки, перед которыми стоит знак плюс? [Опустить скобки и этот знак плюс, переписать слагаемые с теми же знаками]
- Как раскрыть скобки, перед которыми стоит знак минус? [Опустить скобки и этот знак минус, переписать слагаемые с противоположными знаками]
- Как выглядит распределительное свойство умножения? [(a+b)∙c=ac+bc]
III. Устные задания по слайдам.
(слайд 2, слайд 3).
1) Раскройте скобки:
3+(х+2); 3-(х+2); 3+(х-7); 3-(х-7); 3+(-х+5); 3-(-х+5); -4(-5-х); 9(; 9(; 2(7+9х); 4(2-3х); -6(9-5х); -3(1+4х).
2) Приведите подобные слагаемые:
6b-b; 9,5m+3m; a —a; m-m; -4x-x+3; 7x-6y-3x+8y.
3) Упростите выражение:
IV. Новая тема. Решение линейных уравнений.
До сегодняшнего урока мы не умели решать уравнения, в которых неизвестное находилось слева и справа от знака равенства: 3x+7=x+15. Некоторые из нас постоянно забывают правила нахождения неизвестного слагаемого, уменьшаемого, вычитаемого. Сегодня мы постараемся разрешить все эти затруднения.
Уравнение, которое можно привести к виду ax=b, где a и b − некоторые числа (a0), называется линейным уравнением с одним неизвестным.
Линейные уравнения обладают свойствами:
- Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (стр. 229 учебника).
- Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак (стр. 230 учебника).
Рассмотрим план решения линейного уравнения:
х-1+(х+2)=-4(-5-х)-5 х-1+х+2=20+4х-5 х+х-4х=20-5+1-2 -2х=14 х=14:(-2) х=-7 Ответ: -7. | 1) раскрыть скобки, если они есть; 2) слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестное − в правую; 3) привести подобные слагаемые; 4) найти неизвестный множитель. |
Какими из свойств равенств мы воспользовались для решения уравнения? (вторым)
Рассмотрим примеры уравнений, при решении которых будет удобно воспользоваться и первым свойством.
х+3=х+5 │∙9 Удобно умножить на наименьшее общее кратное знаменателей дробей.
(х+3)∙9=(х+5)∙9 Далее − по плану.
📸 Видео
Раскрытие скобок. 6 класс.Скачать
Решение уравнений. Видеоурок 28. Математика 6 классСкачать
Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать
Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать
Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать
Решение уравнений с модулем в 6 классеСкачать
Решение уравнений - математика 6 классСкачать
дробное уравнение как решать для 6 классаСкачать
Линейное уравнение с двумя переменными. 6 класс.Скачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать