- п.1. Решение системы линейных уравнений с параметром
- п.2. Решение системы нелинейных уравнений с параметром
- п.3. Примеры
- Решение систем линейных уравнений с параметрами
- Уравнения с параметрами.
- Что такое уравнение с параметром?
- Графические способы решения уравнений
- Решение уравнений с параметрами с помощью графиков.
- Задача для самостоятельного решения
- 🎬 Видео
п.1. Решение системы линейных уравнений с параметром
Например:
При каком значении a система уравнений имеет одно решение: ( left< begin mathrm & \ mathrm & endright. ).
Система имеет одно решение, если главный определитель не равен нулю: $$ Delta = begin mathrm & 1 \ 1 & mathrm end= a^2-1neq 0 Rightarrow aneq pm 1 $$
Ответ: при всех действительных a, кроме a ≠ ± 1.
п.2. Решение системы нелинейных уравнений с параметром
При решении системы нелинейных уравнений с параметром чаще всего используем графический метод (см. §15 данного справочника).
Например:
При каком значении a система уравнений имеет одно решение: ( left< begin mathrm & \ mathrm & endright. ).
( mathrm ) – уравнение окружности с центром в начале координат, и переменным радиусом a.
( mathrm ) – уравнение прямой.
Система имеет одно решение, если прямая является касательной к окружности:
Точка A является решением: x = 1, y = 1.
Подставляем найденное решение в уравнение для окружности: 1 2 + 1 2 = 2 $$ mathrm<a^2=2Rightarrow a=pmsqrt> $$
п.3. Примеры
Пример 2. Найти все значения параметра a, при каждом из которых система
( left< begin mathrm & \ mathrm & endright. ) имеет единственное решение.
Первое уравнение – квадрат с вершинами (±4; 0),(0; ±4); второе уравнение – окружность переменного радиуса с центром в точке (3; 3).
Единственное решение соответствует радиусу ( mathrm<R=|a+1|=OA=sqrt>. )
При увеличении радиуса будет 2, 3 или 4 точки пересечения. При дальнейшем увеличении окружность становится слишком большой, пересечений с квадратом нет.
Получаем:( mathrm<|a+1|=sqrtRightarrow a+1=pmsqrtRightarrow a_=-1pmsqrt>. )
Пример 3. Найти все значения параметра a, при каждом из которых система
( left< begin mathrm & \ mathrm & endright. ) имеет единственное решение. $$ left< begin mathrm left[begin mathrm & \ mathrm & \ mathrm & endright. & \ mathrm & endright. $$ Первое уравнение – ломаная, второе – парабола ветками вниз с подвижной вершиной на оси x = 2.
При (a – 1) 2 2 = 4 одно решение.
При (a – 1) 2 > 4 два решения.
Получаем:( mathrm left[begin mathrm & \ mathrm & endright. )
Видео:Уравнения с параметром. Алгебра, 8 классСкачать
Решение систем линейных уравнений с параметрами
Разделы: Математика
Цель:
- повторить решение систем линейных уравнений с двумя переменными
- дать определение системы линейных уравнений с параметрами
- научит решать системы линейных уравнений с параметрами.
Ход урока
- Организационный момент
- Повторение
- Объяснение новой темы
- Закрепление
- Итог урока
- Домашнее задание
2. Повторение:
I. Линейное уравнение с одной переменной:
1. Дайте определение линейного уравнения с одной переменной
[Уравнение вида ax=b, где х – переменная, а и b некоторые числа, называется линейным уравнением с одной переменной]
2. Сколько корней может иметь линейное уравнение?
[- Если а=0, b0, то уравнение не имеет решений, х
— Если а=0, b=0, то х R
— Если а0, то уравнение имеет единственное решение, х =
3. Выясните, сколько корней имеет уравнение (по вариантам)
I ряд – I вариант |
Ответ: много корней
Ответ: корней нет
Ответ: единственный корень
II. Линейное уравнение с 2 –мя переменными и система линейных уравнений с 2- мя переменными.
1. Дайте определение линейного уравнения с двумя переменными. Приведите пример.
[Линейным уравнением с двумя переменными называются уравнения вида ах +by=с, где х и у – переменные, а, b и с – некоторые числа. Например, х-у=5]
2. Что называется решением уравнения с двумя переменными?
[Решением уравнения с двумя переменными называются пара значений переменных, обращающие это уравнение в верное равенство.]
3. Является ли пара значений переменных х = 7, у = 3 решением уравнения 2х + у = 17?
4. Что называется графиком уравнения с двумя переменными?
[Графиком уравнения с двумя переменными называется множество всех точек координатной плоскости, координаты которых является решениями этого уравнения.]
5. Выясните, что представляет собой график уравнения:
[Выразим переменную у через х: у=-1,5х+3
Формулой у=-1,5х+3 является линейная функция, графиком которой служит прямая. Так как, уравнения 3х+2у=6 и у=-1,5х+3 равносильны, то эта прямая является и графиком уравнения 3х+2у=6]
6. Что является графиком уравнения ах+bу=с с переменными х и у, где а0 или b0?
[Графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов при переменных не равен нулю, является прямая.]
7. Что называется решением системы уравнений с двумя переменными?
[Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство]
8. Что значит решить систему уравнений?
[Решить систему уравнений – значит найти все ее решения или доказать, что решений нет.]
9. Выясните, всегда ли имеет такая система решения и если имеет, то сколько (графическим способом).
10. Сколько решений может иметь система двух линейных уравнений с двумя переменными?
[Единственное решение, если прямые пересекаются; не имеет решений, если прямые параллельны; бесконечно много, если прямые совпадают]
11. Каким уравнением обычно задается прямая?
12. Установите связь между угловыми коэффициентами и свободными членами:
I вариант:
|
k1 = k2, b1b2, нет решений;
- y=-х+8
- y=2x-1,
k1k2, одно решение;
- y=-x-1
- y=-x-1,
k1 = k2, b1 = b2, много решений.
Вывод:
- Если угловые коэффициенты прямых являющихся графиками этих функций различны, то эти прямые пересекаются и система имеет единственное решение.
- Если угловые коэффициенты прямых одинаковы, а точки пересечения с осью у различны, то прямые параллельны, а система не имеет решений.
- Если угловые коэффициенты и точки пересечения с осью у одинаковы, то прямые совпадают и система имеет бесконечно много решений.
На доске таблица, которую постепенно заполняет учитель вместе с учениками.
III. Объяснение новой темы.
где A1, A2, B1,B2, C1 C2 – выражения, зависящие от параметров, а х и у – неизвестные, называется системой двух линейных алгебраических уравнений с двумя неизвестными в параметрах.
Возможны следующие случаи:
1) Если , то система имеет единственное решение
2) Если , то система не имеет решений
3) Если , то система имеет бесконечно много решений.
IV. Закрепление
Пример 1.
При каких значениях параметра а система
- 2х — 3у = 7
- ах — 6у = 14
а) имеет бесконечное множество решений;
б) имеет единственное решение
а) , а=4
б) , а?4
а) если а=4, то система имеет бесконечное множество решений;
б) если а4, то решение единственное.
Пример 2.
Решите систему уравнений
- x+(m+1)y=1
- x+2y=n
Решение: а) , т.е. при m1 система имеет единственное решение.
б) , т.е. при m=1 (2=m+1) и n1 исходная система решений не имеет
в) , при m=1 и n=1 система имеет бесконечно много решений.
Ответ: а) если m=1 и n1, то решений нет
б) m=1 и n=1, то решение бесконечное множество
- у — любое
- x=n-2y
в) если m1 и n — любое, то
y= x=
Пример 3.
Для всех значений параметра а решить систему уравнений
- ах-3ау=2а+3
- х+ау=1
Решение: Из II уравнения найдем х=1-ау и подставим в I уравнение
1) а=0. Тогда уравнение имеет вид 0*у=3 [у ]
Следовательно, при а=0 система не имеет решений
Следовательно, у . При этом х=1-ау=1+3у
3) а0 и а-3. Тогда у=-, х=1-а(-=1+1=2
1) если а=0, то (х; у)
2) если а=-3, то х=1+3у, у
3) если а0 и а?-3, то х=2, у=-
Рассмотрим II способ решения системы (1).
Решим систему (1) методом алгебраического сложения: вначале умножим первое уравнение системы на В2, второе на – В1 и сложим почленно эти уравнения, исключив, таким образом, переменную у:
Т.к. А1В2-А2В10, то х =
т.к. А2В1-А1В2 0 у =
Для удобства решения системы (1) введем обозначения:
— главный определитель
Теперь решение системы (1) можно записать с помощью определителей:
х= ; у=
Приведенные формулы называют формулами Крамера.
— Если , то система (1) имеет единственное решение: х=; у=
— Если , или , , то система (1) не имеет решений
— Если , , , , то система (1) имеет бесконечное множество решений.
В этом случае систему надо исследовать дополнительно. При этом, как правило, она сводится к одному линейному уравнению. В случае часто бывает удобно исследовать систему следующим образом: решая уравнение , найдем конкретные значения параметров или выразим один из параметров через остальные и подставим эти значения параметров в систему. Тогда получим систему с конкретными числовыми коэффициентами или с меньшим числом параметров, которую надо и исследовать.
Если коэффициенты А1, А2, В1, В2, системы зависят от нескольких параметров, то исследовать систему удобно с помощью определителей системы.
Пример 4.
Для всех значений параметра а решить систему уравнений
- (а+5)х+(2а+3)у=3а+2
- (3а+10)х+(5а+6)у=2а+4
Решение: Найдем определитель системы:
= (а+5)(5а+6) – (3а+10) (2а+3)= 5а 2 +31а+30-6а 2 -29а-30=-а 2 +2а=а(2-а)
= (3а+2) (5а+6) –(2а+4)(2а+3)=15а 2 +28а+12-4а 2 -14а-12=11а 2 +14а=а(11а+14)
=(а+5) (2а+4)-(3а+10)(3а+2)=2а 2 +14а+20-9а 2 -36а-20=-7а 2 -22а=-а(7а+22)
1) Тогда
х= у=
2) или а=2
При а=0 определители
Тогда система имеет вид:
- 5х+3у=2 5х+3у=2
- 10х+6у=4
При а=2 Этого достаточно, чтобы утверждать, что система не имеет решений.
1) если а и а, то х= у=
2) если а=0, то х,
3) если а=2, то (х; у)
Пример 5.
Для всех значений параметров а и b решить систему уравнений
Решение: = =а+1-2b
= = b -6; = 3a+3-b
1) . Тогда
х= у=
2)
Подставив выражение параметра а в систему, получим:
- 2bx+2y=b 2bx+2y=b
- bx+y=3 2bx+2y=6
Если b6, то система не имеет решений, т.к. в этом случае I и II уравнения системы противоречат друг другу.
Если b=6, а=2b-1=2*6-1=11, то система равносильна одному уравнению
12х+2у=6 у=3-6х
1) если , (а), то x=, y=
2) если b, a, то система не имеет решений
3) если b=6, а=11, то х, у=3-6х
Итог урока: Повторить по таблице и поставить оценки.
При каких значениях параметра система уравнений
- 3х-2у=5
- 6х-4у=b
а) имеет бесконечное множество решений
б) не имеет решений
б) b10
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Уравнения с параметрами.
Исследование и решение уравнений с параметрами считается не самым простым разделом школьной математики. Однако, параметр, как понятие, часто воспринимается школьниками гораздо более сложным, чем есть в действительности. Здесь в первом пункте представлены очень простые вводные примеры использования параметров в уравнениях. Те, для кого это понятие не составляет большой трудности, могут сразу перейти к решению задач, которые представлены ниже.
Видео:9 класс. Алгебра. Уравнение с двумя параметрамиСкачать
Что такое уравнение с параметром?
Допустим нам нужно решить уравнение 2х + 5 = 2 − x.
Решение: 2x + x = 2 − 5; 3x = −3; x = −3/3 = −1.
Теперь нужно решить уравнение 2x + 5 = 3 − x.
Решение: 2x + x = 3 − 5; 3x = −2; x = −2/3
Затем нужно решить уравнение 2x + 5 = 0,5 − x.
Решение: 2x + x = 0,5 − 5; 3x = −4,5; x = −4,5/3 = −1,5.
А потом может потребоваться решить уравнение 2x + 5 = 10,7 − x или уравнение 2x + 5 = −0,19 − x.
Понятно, что уравнения похожи, а потому их решение будет сопровождаться теми же действиями, что выше. Возникает естественный вопрос — сколько можно делать одно и то же?
Уменьшим себе трудозатраты. Заметим, что все эти уравнения отличаются только одним числом в правой части. Обозначим это число символом a .
Получим уравнение 2х + 5 = a − х,
где a — переменная величина, вместо которой можно подставить нужное числовое значение и получить нужное уравнение. Эта переменная и называется параметром.
Решим это уравнение так же, как и все предыдущие.
Решение: 2х + 5 = a − x; 2x + x = a − 5; 3x = a − 5; x = (a − 5)/3.
Теперь для того, чтобы найти ответы для двух последних примеров, мы можем не повторять полностью всё решение каждого уравнения, а просто подставить в полученную формулу для х числовое значение параметра а:
x = (10,7 − 5)/3 = 5,7/3 = 1,9;
x = (−0,19 − 5)/3 = −5,19/3 = −1,73.
Таким образом, под термином «уравнение с параметром», фактически, скрывается целое семейство «почти одинаковых уравнений» , которые отличаются друг от друга только одним числом (одним слагаемым или одним коэффициентом) и одинаково решаются. Параметр — это число, которое меняется от уравнения к уравнению.
Полученную формулу для корня уравнения мы можем запрограммировать на компьютере. Достаточно будет только ввести значение параметра a, чтобы получить решение любого такого уравнения.
Рассмотрим еще один пример.
Замечаем, что они похожи друг на друга и отличаются только первым коэффициентом. Обозначим его, например, символом k.
Решим уравнение kх + 5 = 2 − x с параметром k.
С помощью этой формулы вычислим все ответы для приведенных уравнений.
x = −3/(2 + 1) = −1
x = −3/(3 + 1) = −0,75
x = −3/(−4 + 1) = 1
x = −3/(17 + 1) = −1/6
Можем ли мы теперь запрограммировать эту формулу и сказать, что с её помощью можно решить любое аналогичное уравнение?
Запрограммировать можем. Компьютер справится как с очень большими значениями коэффициента, так и с очень маленькими.
Например, если введём k = 945739721, то для уравнения заданного вида будет получен корень примерно равный −0,0000000031721201195353831188, если k = 0,0000004, то получим корень ≈ −2,9999988000004799998080000768.
Но, если мы введем в программу, казалось бы, более простое значение k = −1, то компьютер зависнет.
Почему?
Посмотрим внимательнее на формулу x = −3/(−1 + 1) = −3/0. Деление на ноль.
Посмотрим на соответствующее уравнение −1·х + 5 = 2 − x.
Преобразуем его −х + x = 2 − 5.
Оказывается, оно равносильно уравнению 0 = −3 (. ) и не может иметь корней.
Таким образом, из общего подхода к решению «почти одинаковых уравнений» могут существовать исключения, о которых нужно позаботиться отдельно. Т.е. провести предварительное исследование всего семейства уравнений. Именно этому и учатся на уроках математики с помощью так называемых задач с параметрами.
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Графические способы решения уравнений
Сначала вспомним, что представляет собой графический способ решения обычного уравнения (без параметра).
Пусть дано уравнение вида f(x) = g(x) . Построим графики функций y = f(x) и y = g(x) и найдём точки пересечения этих графиков. Абсциссы точек пересечения и есть корни уравнения.
Для быстрого построения эскизов графиков повторите еще раз графики элементарных функций, которые изучаются в школьном курсе математики, и правила преобразования графиков функций.
Рассмотрим примеры.
1. Решить уравнение
2х + 5 = 2 − x
Ответ: x = −1.
2. Решить уравнение
2х 2 + 4х − 1 = 2х + 3
3. Решить уравнение
log2х = −0,5х + 4
Ответ: x = 2.
Первые два из приведенных уравнений вы можете решить и аналитически, так как это обычные линейное и квадратное уравнения. Второе уравнение содержит функции разных классов — степенную (здесь линейную) и трансцендентную (здесь логарифмическую). Для таких случаев выбор способов решения у школьников очень ограничен. Фактически, единственным доступным способом является именно графическое решение.
Внимание: Для корней, найденных графическим способом, обязательна проверка! Вы уверены, что на третьем рисунке пересечение именно в точке х = 4 , а не в точке 3,9 или 4,1? А если на реальном экзамене у вас нет возможности построить график достаточно точно? На чертеже «от руки» разброс может быть еще больше. Поэтому алгоритм действий должен быть следующим:
- Предварительный вывод: х ≈ 4.
- Проверка: log24 = −0,5·4 + 4; 2 = −2 + 4; 2 ≡ 2.
- Окончательный вывод х = 4.
Чтобы графически решать уравнения с параметрами надо строить не отдельные графики, а их семейства.
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Решение уравнений с параметрами с помощью графиков.
Задача 1.
Найти все значения параметра q при которых уравнение |x + 1| − |x − 3| − x = q 2 − 8q + 13 имеет ровно 2 корня.
При каждом значении параметра q можно вычислить значение выражения q 2 − 8q + 13 . Результат обозначим переменной а.
Т.е. примем q 2 − 8q + 13 = a и решим уравнение с параметром |x + 1| − |x − 3| − x = a
Строим график функции y = |x + 1| − |x − 3| − x , расположенной в левой части уравнения.
Для этого разобьём числовую ось на отрезки точками, в которых каждый из встречающихся модулей принимает нулевое значение.
Для каждого из этих участков раскроем модули с учётом знаков.
Вспомним: по определению |x| = x, если х ≥ 0, и |x| = −x, если х Чтобы проверить знаки модулей на участке достаточно подставить любое промежуточное значение x из этого отрезка, например, −2, 0 и 4.
Таким образом на участке I, где −∞ имеем −(x + 1) + (x − 3) − x = − x − 4.
Следовательно, должны построить график функции y = − x − 4 .
Это линейная функция. Её график прямая линия, которую можно построить по двум точкам, например, x = 0, y = −4 и у = 0, x = −4. Cтроим всю прямую бледной линией, а затем выделяем часть графика, относящуюся только к рассматриваемому участку.
Аналогично, разбираемся с оставшимися двумя участками.
На участке II, где −1 имеем (x + 1) + (x − 3) − x = x − 2
и должны построить соответствующую часть графика функции y = x − 2 .
На участке III, где 3 , имеем (x + 1) − (x − 3) − x = − x + 4
и должны построить соответствующую часть графика функции y = − x + 4 .
Последовательное построение итогового графика показано ниже. (Чтобы увеличить рисунок, нужно щелкнуть по нему левой кнопкой мыши.)
Замечание: если вы освоили тему Преобразование графиков функций, то с этой частью задачи сможете справиться быстрее, чем показано в примере.
Итак, построение графика функции, расположенной в левой части уравнения, мы завершили. Посмотрим, что находится в правой части.
График функции y = a представляет собой прямую линию, параллельную оси абсцисс (Ox), и пересекающую ось ординат (Oy) в точке а. Так как а — параметр, который может принимать разные значения, то нужно построить целое семейство таких параллельных линий, пересекающих ось ординат на разной высоте. Очевидно, что все графики семейства построить мы не сможем, поскольку их бесконечное множество. Изобразим для примера несколько штук в районе уже построенного графика функции. Ниже прямые семейства y = a показаны красным цветом.
Из рисунка видно, что количество точек пересечения каждой из красных прямых с ранее построенным (зелёным) графиком зависит от высоты, на которой расположена эта прямая, т.е. от параметра а. Прямые, расположенные ниже y = −3 , пересекают график в одной точке, а значит эти уравнения имеют только одно решение. Прямые, проходящие на уровне −3 имеют по три точки пересечения, значит соответствующие уравнения будут иметь по три решения. Прямые, расположенные выше точки y = 1 , снова имеют только по одной точке пересечения.
Ровно две точки пересечения с зелёным графиком будут иметь только прямые y = 1 и y = −3 . Соответствующие уравнения будут иметь ровно два корня, что и требовалось определить в задании.
Однако мы нашли значения введённого нами параметра а, при котором заданное уравнение имеет 2 корня, а вопрос задачи состоял в том, чтобы найти все значения параметра q. Для этого придётся решить следующую совокупность уравнений:
Это обычные квадратные уравнения, которые решаются через дискриминант или по теореме Виета.
Таким образом, окончательный ответ: .
Задача 2.
Найти все значения параметра a, при которых уравнение (2 − x)x(x − 4) = a имеет ровно 3 корня.
Рассмотрим функцию y = (2 − x)x(x − 4) . Видно, что если раскрыть скобки, то старший член будет −х 3 . Т.е. графиком функции должна быть кубическая парабола, причем на при x, стремящемcя к +∞, y → −∞, а при x, стремящемся к −∞, y → +∞.
Поскольку уравнение (2 − x)x(x − 4) = 0 имеет три корня 2, 0 и 4, то график функции будет пересекать ось абсцисс трижды.
Понятно, что при упомянутых условиях график непрерывной функции должен иметь участок с «волной». Строим от руки эскиз графика.
Правая часть уравнения y = a такая же, как в предыдущей задаче. Поэтому дальнейшие построения не требуют комментариев. Смотрите рисунки. Чтобы увеличить, используйте щелчок мышью.
Из рисунков видно, что прямые, отделяющие линии с тремя точками пересечения от других случаев, проходят через экстремумы кубической функции. Поэтому определяем значения ymax и ymin через производную. (Исследовать функцию полностью не нужно, так как примерное положение точек экстремума мы видим на эскизе графика.) Обратите внимание на то, что при вычислении значений функции используются точные значения x и формулы сокращенного умножения. Приближенные значения в промежуточных вычислениях не используют.
Ответ:
Видео:Уравнения с параметром. Алгебра 7 класс.Скачать
Задача для самостоятельного решения
Задача 3.
При каком наибольшем отрицательном значении параметра а уравнение имеет один корень?
Ответ: -1,625
Задача реального экзамена ЗНО-2013 (http://www.osvita.ua/).
Переход на главную страницу сайта «Математичка».
Есть вопросы? пожелания? замечания?
Обращайтесь — mathematichka@yandex.ru
Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте гиперссылку.
🎬 Видео
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Решение системы неравенств с двумя переменными. 9 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать
ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
8 класс, 39 урок, Задачи с параметрамиСкачать
9 класс. Алгебра. Уравнение с параметрами.Скачать
✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать
ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурокСкачать
Алгебра 8 класс (Урок№33 - Уравнения с параметром. Контрольный урок.)Скачать
9 класс, 8 урок, Уравнения с двумя переменнымиСкачать
7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать
✓ Четыре способа решить параметр с модулем | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать