Решить уравнение log5 cosx sin2x 25 2

Задача 1010 a) Решите уравнение: log5(cosx — sin2x +.

Условие

Решить уравнение log5 cosx sin2x 25 2

a) Решите уравнение: log5(cosx — sin2x + 25) = 2
б) Найдите все корни этого уравнения, принадлежащие отрезку [2p ; 7p/2]

Решение

Решить уравнение log5 cosx sin2x 25 2

Ответ: В решение

почему не сказано ни слова ни об ОДЗ, ни сделана проверка?

Видео:Решите уравнение ★ cos⁡x+sin⁡x=1 ★ Как решать простые уравнения?Скачать

Решите уравнение ★ cos⁡x+sin⁡x=1 ★ Как решать простые уравнения?

Решить уравнение log5 cosx sin2x 25 2

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Видео:Решите уравнение ★ cos⁡x+sin⁡y=2Скачать

Решите уравнение ★ cos⁡x+sin⁡y=2

Задача C1: логарифмы и тригонометрия в одном уравнении

19 февраля 2014

Сегодня у нас будет насыщенный урок, потому что уравнение, которое мы будем сегодня разбирать, содержит в себе и логарифмическую, и тригонометрическую функцию. Но все по порядку.

Задача C1. Решите уравнение. Найдите все корни этого уравнения, принадлежащие промежутку.

Решить уравнение log5 cosx sin2x 25 2

На первый взгляд, задача кажется весьма нестандартной: тут и логарифмы, и тригонометрия. Но если разобраться, то окажется, что уравнения такого типа вполне под силу большинству учеников.

Видео:Тригонометрические уравнения sin2x=√2/2; cos x/3=-1/2Скачать

Тригонометрические уравнения sin2x=√2/2;  cos x/3=-1/2

Решение логарифмического уравнения

Итак, нужно решить уравнение:

log5 (cos x − sin 2 x + 25) = 2

Как видим, в первую очередь перед нами логарифмическое уравнение. Вспоминаем: как мы решаем логарифмическое уравнение? Очевидно, приводим его к каноническому виду, а именно:

log a f ( x ) = log a g ( x )

В нашем случае слева уже стоит логарифм по основанию 5. Следовательно, двойку тоже нужно представить в виде логарифма по тому же самому основанию 5. Вспоминаем, как это делается. С помощью нашей замечательной формулы:

Разумеется, мы можем подставить любое число b , удовлетворяющее требованиям, которые накладываются на основание логарифма:

Иначе наш логарифм просто не имеет смысла. Но какое именно b выбрать? Очевидно, что основание логарифма по нашей канонической записи должно быть равно основанию уже имеющегося логарифма, т. е. 5. Т.е. в нашем случае запишем:

Перепишем Все уравнение с учетом этого факта:

log5 (cos x − sin 2 x + 25) = log5 25

Перед нами каноническое логарифмическое уравнение. В нем мы можем смело убрать знаки логарифма (т.е. просто приравнять аргументы логарифмов). Получим:

cos x − sin 2 x + 25 = 25

Видео:Решение уравнения a*sin^2(x)+b*sin(x)*cos(x)+c*cos^2(x)=0Скачать

Решение уравнения a*sin^2(x)+b*sin(x)*cos(x)+c*cos^2(x)=0

Решение тригонометрического уравнения

Перед нами тригонометрическое уравнение. Переносим 25 влево и получаем:

cos x − sin 2 x = 0

Теперь нам нужно решить обычное тригонометрическое уравнение. Все тригонометрические уравнения должны быть сведены к простейшему уравнению одного из трех видов:

Подобно тому, как в логарифмах есть каноническая запись, точно так же и в тригонометрии есть каноническая запись уравнений. Давайте еще раз посмотрим на наше уравнение:

cos x − sin 2 x = 0

Что-то канонической записью тут не пахнет. Во-первых, аргументы у наших тригонометрических функций разные. И это первая проблема. Следовательно, надо каким-то образом избавится от аргумента 2 x и свести его к х. Или, наоборот: сделать так, чтобы вместо переменной x стояло 2 x .

Еще раз: когда мы видим тригонометрическое уравнение, первое, что нам нужно — это постараться сделать так, чтобы во всех тригонометрических функциях были одинаковые аргументы: везде либо х, либо 2х. Любыми правдами и неправдами, любыми преобразованиями функций мы должны добиться того, чтобы аргументы были равными.

При решении тригонометрических уравнений сводите все функции к одному и тому же аргументу.

Формула синуса двойного угла

В данном случае все очень легко. Вспоминаем формулу синуса двойного угла:

sin 2 x = 2sin x · cos x

Подставляем это выражение в наше уравнение:

cos x − 2sin x · cos x = 0

Мы видим, что и в первом, и во втором слагаемом есть cos x . Выносим его за скобку:

cos x (1- 2sin x · 1) = 0

Кто-то скажет, что 1 в скобках писать излишне. Да, я не спорю, можно сразу записать так:

cos x (1- 2sin x ) = 0

Однако если вы только разбираетесь в тригонометрических уравнениях, то лучше использовать эту избыточность и записать ту самую единицу. Почему? Да потому что если вы не запишете 1 в конце перед скобкой, то велика вероятность, что вы забудете про единицу и в начале. В итоге у вас получится неверное выражение и, соответственно, мы получим неверный ответ.

А вот так, с дополнительной единичкой, никаких проблем не возникнет. В общем, запомните правило: если из какого-то выражения выносим переменную или функцию, вместо этой нее мы везде пишем единицу. И лишь затем, после того, как мы запишем эту конструкцию в скобках, мы можем убрать лишние единицы, если это возможно.

Рекомендую оставлять единицы на месте <> общих множителей, которые выносятся за скобку. Так вы застрахуете себя от обидных ошибок.

Разложение уравнения на множители

В нашем случае все возможно. Получим:

cos x (1- 2sin x ) = 0

Произведение равно нулю, когда хотя бы один из множителей равен нулю: либо cos x = 0, либо 1 − 2sin x = 0

Перед нами совокупность из двух простейших тригонометрических уравнений:

cos x = 0; 1 = 2sin x = 0.

Однако cos x = 0 — это уже каноническая запись вида cos x = a — именно так, как нужно для решения задачи. А вот второе уравнение — 1− 2sin x — нужно преобразовать. Предлагаю выразить отсюда sin x :

-2sin x = -1;
sin x = 1/2.

Мы получили окончательную совокупность:

cos x = 0; sin x = 1/2.

Таким образом, перед нами два канонических уравнения, которые легко решаются. Вспоминаем, что cos x = 0 — это частный случай, поэтому x = π/2 + π n , n ∈ Z .

Особенности решения тригонометрических уравнений с синусом

С другой стороны, sin x = 1/2 — это не частный, а общий случай. Кроме того, всем своим ученикам я рекомендую расписывать решения уравнений вида sin x = a через совокупность двух множеств:

sin x = a ⇒
x = arcsin a + 2π n , n ∈ Z;
x = π − arcsin a + 2π n , n ∈ Z .

Обратите внимание: в обоих вариантах периодом будет именно величина 2π, т.е. полный оборот на тригонометрическом круге! В нашем случае получим:

Решить уравнение log5 cosx sin2x 25 2

Итого мы получили совокупность из трех наборов корней:

Решить уравнение log5 cosx sin2x 25 2

Область определения логарифмов — считать или не считать?

Внимательные ученики наверняка заметят: изначально мы решали логарифмическое уравнение и, следовательно, должны учесть область определения логарифма. Потому что если где-то в уравнении встречается выражение вида log a f ( x ) = log a g ( x ), мы обязаны проверить, что f ( x ) > 0.

Почему же при решении данного уравнения мы нигде это не записали? Это же ошибка! Спокойно: в данном случае никакой ошибки нет. Требование к логарифму, чтобы аргумент был больше нуля, выполняется автоматически на следующем шаге:

cos x − sin 2 x + 25 = 25

Получается, что выражение под знаком логарифма в нашем случае должно быть равно 25. А 25 заведомо больше нуля, т. е. область определения автоматически выполняется для всех корней, которые мы получим в процессе решения уравнения.

И вообще, запомните: когда в уравнении присутствует лишь один логарифм, в аргументе которого имеется функция переменного х, можно вообще не заморачиваться с проверкой области определения, потому что эта область определения будет автоматически выполняться в процессе решения уравнения. Но это работает только для уравнений и только в том случае, если логарифм с функцией присутствует лишь в одном экземпляре на все уравнение.

Требования к области определения выполняются автоматически, если функция стоит в аргументе логарифма, а сам логарифм встречается в уравнении лишь один раз.

В нашем случае это требование выполняется, потому что мы решаем именно уравнение, а не неравенство, и логарифм с функцией в аргументе встречается только один. Собственно, исходное уравнение вообще содержит только один логарифм, поэтому считать область определения в данном случае излишне. Следовательно, мы решили уравнение — получили ответ к первой части задачи.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Отбор корней на отрезке

Переходим ко второй части задачи и находим корни, лежащие на заданном отрезке [2π; 7π/2]. Искать корни будем с помощью тригонометрического круга.

Первым делом обозначаем все три корня на тригонометрическом круге. Кроме того, отметим концы отрезка: 2π и 7π/2. Точка 2π совпадает с точкой началом отсчета, а в числе 7π/2 давайте выделим целую часть — по аналогии с обычными дробями:

Решить уравнение log5 cosx sin2x 25 2

Отметим полученное число на тригонометрическом круге. Теперь проведем лучи из начала координат в каждую точку. После этого ставим маркер в точку 2π и начинаем двигаться к точке 7π/2 против часовой стрелки. Получим:

Решить уравнение log5 cosx sin2x 25 2

  1. Самый первый корень: 2π + π/6;
  2. Затем — второй корень: 2π + π/2;
  3. Следующий корень: 2π + 5π/6;
  4. Наконец, последний корень совпадает с концом отрезка: 7π/2.

Особенности вычисления дробных корней

Ключевой момент в решении задачи таким методом состоит в том, каким образом мы отбираем корни. В первую очередь мы ставим маркер (ручку, карандаш или что там к вас) в самый левый конец отрезка — в нашем случае это 2π. Затем мы начинаем двигаться против часовой стрелки, т. е. в положительном направлении отсчета на тригонометрическом круге.

Первая точка, которую мы встречаем на своем пути, будет x = π/6. Чтобы записать корень, мы добавляем π/6 к началу отсчета 2π — это мы и записали. Идем дальше и прибавляем π/2. Потом, если идти еще дальше, мы попадаем точку 5π/6. И когда мы дойдем до конца, то обнаружим еще один корень — точку 7π/2.

Осталось посчитать те три корня из четырех, которые мы записали в виде выражения, потому что оставлять их в таком нерассчитанном виде нехорошо. Давайте посчитаем:

Решить уравнение log5 cosx sin2x 25 2

С последним корнем 7π/2 никаких дополнительных преобразований проводить не нужно — он уже рассчитан. Итого при отборе корней из всего бесконечного множества, разделенного на три набора, которые мы получили при решении нашего уравнения, остались лишь четыре конкретных корня:

Решить уравнение log5 cosx sin2x 25 2

Заключительные выкладки

Вот и все — задача решена. Как ни странно, решение получилось довольно простым, хотя изначально уравнение выглядело весьма угрожающе: в нем есть и логарифм, и тригонометрические функции. А получилось, что любой среднестатистический ученик вполне в состоянии справится с такими уравнениями.

И это правда. Достаточно помнить два простых факта:

  1. Логарифмические уравнения мы всегда стараемся привести к каноническому виду: log_a f(x) = log_a g(x) — основания должны быть одинаковыми.
  2. Тригонометрические уравнения тоже сводятся к каноническому виду. Точнее, к одной из трех моделей: sin x = a; cos x = a; tg x = a.

Однако нашем случае на пути к каноническому виду есть одна заминка. Дело в том, что в одной из функций, а именно sin 2 x , присутствует аргумент 2 x , в то время как в cos x есть только переменная х. Следовательно, придется вспомнить формулу двойного угла: sin 2 x = 2sin x · cos x — и уже на основании этой формулы наше исходное уравнение легко раскладывается на множители, откуда возникают канонические уравнения.

В общем, все, что требуется для решения уравнений подобного вида — это научиться работать с логарифмами, выучить несколько тригонометрических формул (особенно это касается формул синуса и косинуса двойного угла) и, конечно, не бояться преобразовать наше уравнение для того, чтобы получить красивые и легко решаемые конструкции.

📺 Видео

Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать

Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)

Как решить уравнение с логарифмом log2 5 Линейное уравнение Простое уравнение Как решать логарифмСкачать

Как решить уравнение с логарифмом log2 5 Линейное уравнение Простое уравнение Как решать логарифм

Решите уравнение ★ 2^((sinx)^2)+4∙2^((cosx)^2)=6Скачать

Решите уравнение ★ 2^((sinx)^2)+4∙2^((cosx)^2)=6

Решение логарифмических уравнений #shortsСкачать

Решение логарифмических уравнений #shorts

Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

Уравнения. 5 классСкачать

Уравнения. 5 класс

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Уравнение косинус. Арккосинус. Видеоурок 28. Алгебра 10 классСкачать

Уравнение косинус. Арккосинус. Видеоурок 28. Алгебра 10 класс

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Как решать тригонометрическое уравнение cos^2 x =1/2 Уравнение с косинусом в квадрате Решите уравненСкачать

Как решать тригонометрическое уравнение cos^2 x =1/2 Уравнение с косинусом в квадрате Решите уравнен

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Как решать нестандартные уравнения ➜ 2^(x^2)=cos⁡(x^2)Скачать

Как решать нестандартные уравнения ➜ 2^(x^2)=cos⁡(x^2)
Поделиться или сохранить к себе: