Задание.
а) Решите уравнение 6sin 2 x + 5sin(π/2-x) – 2 = 0.
б) Укажите корни этого уравнения, принадлежащие отрезку [- 5π; — 7π/2].
Решение:
а) Решите уравнение
ОДЗ уравнения – все числа.
Преобразуем sin(π/2 — x), воспользуемся формулами приведения.
Так как под знаком преобразуемой тригонометрической функции содержится выражение (π/2 — x), то наименование тригонометрической функции меняем на родственное, т. е. синус — на косинус.
Так как (π/2 — x) — аргумент из первой четверти, то в ней преобразуемая функция синус имеет знак плюс. Получим:
Воспользуемся основным тригонометрическим тождеством:
sin 2 x + cos 2 x = 1
sin 2 x = 1 – cos 2 x
Тогда данное уравнение примет вид:
6sin 2 x + 5sin(π/2-x) – 2 = 0
6·(1 – cos 2 x) + 5cosx – 2 = 0
6 – 6cos 2 x + 5cosx – 2 = 0
– 6cos 2 x + 5cosx + 4 = 0
6cos 2 x – 5cosx – 4 = 0
Введем новую переменную, пусть cosx = a, тогда получим
Вернемся к первоначальной переменной, получим два уравнения.
Решим 1 уравнение:
Уравнение не имеет решения, так как — 1 ≤ cosx ≤ 1.
Решим 2 уравнение:
б) Найдем корни уравнения, принадлежащие отрезку [- 5π; — 7π/2].
Для первого корня:
Для второго корня:
Здравствуйте, а почему:
6·(1 – cos2x) + 5cosx – 2 = 0
6cos2x – 5cosx – 4 = 0 (как -2 превратилось в -4) ?
- Задача 982 a) Решите уравнение: 6sin^2x + 5sin(p/2.
- Условие
- Решение
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение тригонометрических уравнений.
- Немного теории.
- Тригонометрические уравнения
- Уравнение cos(х) = а
- Уравнение sin(х) = а
- Уравнение tg(х) = а
- Решение тригонометрических уравнений
- Уравнения, сводящиеся к квадратным
- Уравнение вида a sin(x) + b cos(x) = c
- Уравнения, решаемые разложением левой части на множители
- Решить уравнение 6sin 2x 5sin pi 2 x 2 0
- 🎬 Видео
Видео:Математика а) Решите уравнение 6Sin^2 x+5Sin(П/2-x)-2=0 б) Найдите все корни этого уравненияСкачать
Задача 982 a) Решите уравнение: 6sin^2x + 5sin(p/2.
Условие
a) Решите уравнение: 6sin^2x + 5sin(p/2 — x) — 2 = 0
б) Найдите все корни этого уравнения, принадлежащие отрезку [-5p ; -7p/2]
Решение
Ответ: в решение
найдите все корни уравнения принадлежащие отрезку от -2п до -п/2
Здесь сделано с помощью тригонометрической окружности, если Вам это непонятно, лучше делайте неравенствами, хотя через окружность значительно быстрее
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
Калькулятор онлайн.
Решение тригонометрических уравнений.
Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое уравнение
Решить уравнение
Видео:Сложные уравнения. Как решить сложное уравнение?Скачать
Немного теории.
Видео:Решение уравнений, 6 классСкачать
Тригонометрические уравнения
Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать
Уравнение cos(х) = а
Из определения косинуса следует, что ( -1 leqslant cos alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.
Уравнение cos x = а, где ( |a| leqslant 1 ), имеет на отрезке ( 0 leqslant x leqslant pi ) только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если a
Видео:Решите уравнение ★ x^6-2x^5-x^4+3x^3+x^2-2x-1=0Скачать
Уравнение sin(х) = а
Из определения синуса следует, что ( -1 leqslant sin alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.
Уравнение sin х = а, где ( |a| leqslant 1 ), на отрезке ( left[ -frac; ; frac right] ) имеет только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если а
Видео:Три способа отбора корней в задании 13 ЕГЭ профильСкачать
Уравнение tg(х) = а
Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.
Уравнение tg x = а для любого a имеет на интервале ( left( -frac; ; frac right) ) только один корень. Если ( |a| geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right) ); если а
Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Решение тригонометрических уравнений
Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.
Видео:How to Solve Trigonometric Equations 6sin^2x+cosx-5=0, Solving Trig EquationsСкачать
Уравнения, сводящиеся к квадратным
Решить уравнение 2 cos 2 (х) — 5 sin(х) + 1 = 0
Заменяя cos 2 (х) на 1 — sin 2 (х), получаем
2 (1 — sin 2 (х)) — 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) — 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y — 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = — 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; ( x = (-1)^n text(0,5) + pi n = (-1)^n frac + pi n, ; n in mathbb )
Ответ ( x = (-1)^n frac + pi n, ; n in mathbb )
Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) — 4 = 0
Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 — sin 2 (6х)) + 4 sin(6х) — 4 = 0 => 3 sin 2 (6х) — 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 — 4y +1 =0, откуда y1 = 1, y2 = 1/3
Видео:№7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать
Уравнение вида a sin(x) + b cos(x) = c
Решить уравнение 2 sin(x) + cos(x) — 2 = 0
Используя формулы ( sin(x) = 2sinfrac cosfrac, ; cos(x) = cos^2 frac -sin^2 frac ) и записывая правую часть уравпения в виде ( 2 = 2 cdot 1 = 2 left( sin^2 frac + cos^2 frac right) ) получаем
Поделив это уравнение на ( cos^2 frac ) получим равносильное уравнение ( 3 text^2frac — 4 textfrac +1 = 0 )
Обозначая ( textfrac = y ) получаем уравнение 3y 2 — 4y + 1 = 0, откуда y1=1, y1= 1/3
В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях ( a neq 0, ; b neq 0, ; c neq 0, ; c^2 leqslant b^2+c^2 ) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на ( sqrt ):
Решить уравнение 4 sin(x) + 3 cos(x) = 5
Здесь a = 4, b = 3, ( sqrt = 5 ). Поделим обе части уравнения на 5:
Видео:Решение неравенства методом интерваловСкачать
Уравнения, решаемые разложением левой части на множители
Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.
Решить уравнение sin(2х) — sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) — sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x — 1) = 0
Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х — х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0
Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) — sin 2 (x), то
cos(2x) = 1 — sin 2 (x) — sin 2 (x), cos(2x) = 1 — 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 — cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 — cos(2x)) + 2 (1 — cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0
Видео:Квадратные тригонометрические уравнения. Часть 13.10. Алгебра 10 классСкачать
Решить уравнение 6sin 2x 5sin pi 2 x 2 0
Опубликовано 11.06.2017 по предмету Алгебра от Гость >>
Ответ оставил Гость
t=
t=
cosx=
x=+-2π/3 +2πn, n∈z
cosx=
x= нет корней
Б) По числовой окружности отберем корни, это -14π/3,
🎬 Видео
sin² x – 5sin x + 4 = 0. Решение тригонометрического уравнения методом замены переменнойСкачать
Решить уравнение - Математика - 6 классСкачать
Решить уравнение с дробями - Математика - 6 классСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
№7 Тригонометрические уравнения. sin(2x)+2sin^2(x)=6cos(2x)Скачать
Решите уравнение (x+7)^2+(x-6)^2=2x^2. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать
Задача из второй части реального ОГЭ и распространенная ошибкаСкачать