Решить систему уравнений показательное и тригонометрическое

Е.П. Нелин, В.А. Лазарев

АЛГЕБРА

и начала математического

анализа

10 класс

учреждений. Базовый и

Содержание
  1. § 21. РЕШЕНИЕ СИСТЕМ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
  2. Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов:из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.
  3. Упражнения
  4. Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем
  5. Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем
  6. Оставить Комментарий Отменить ответ
  7. Выбери тему
  8. Самые популярные записи
  9. StudyWay
  10. Помощь
  11. Что за курс и что тебя там будет ждать?
  12. Системы уравнений по-шагам
  13. Результат
  14. Примеры систем уравнений
  15. Правила ввода
  16. 💡 Видео

Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

§ 21. РЕШЕНИЕ СИСТЕМ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Работу выполнила: Мусина В.А. студентка группы 45.3

Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов:из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.


Задача 1
. Решите систему уравнений

Решить систему уравнений показательное и тригонометрическое

Решить систему уравнений показательное и тригонометрическоеИз первого уравнения находим Решить систему уравнений показательное и тригонометрическоеи подставляем во второе.

Получаем Решить систему уравнений показательное и тригонометрическое

Решить систему уравнений показательное и тригонометрическое

Замечание. Если бы для нахождения значения y мы не рассмотрели отдельно формулу (1) со знаком «+» и знаком «–», то вместе с верными решениями получили бы и посторонние решения заданной системы.

Действительно, в таком случае имеем Решить систему уравнений показательное и тригонометрическое

Тогда, например, при n = 0 получаем Решить систему уравнений показательное и тригонометрическое

Таким образом, кроме решений, которые вошли в ответ, мы имеем еще две возможности:

Решить систему уравнений показательное и тригонометрическое

Но эти пары значений х и у не являются решениями заданной системы, поскольку они не удовлетворяют первому уравнению.

Поэтому следует запомнить:

Когда решение уравнения cos x = а приходится применять для дальнейших преобразований, то удобно записывать его в виде двух формул: отдельно со знаком «+» и отдельно со знаком «–».

Задача 2 . Решите систему уравнений

Решить систему уравнений показательное и тригонометрическое

Решить систему уравнений показательное и тригонометрическоеПочленно сложим и вычтем эти уравнения. Получим равносильну систему

Решить систему уравнений показательное и тригонометрическое

Представим последнюю систему в виде совокупности двух систем, записывая решения второго уравнения отдельно со знаком «+» и отдельно со знаком «–»:

Решить систему уравнений показательное и тригонометрическое

Почленно складывая и вычитая уравнения этих систем, находим x и y:Решить систему уравнений показательное и тригонометрическое

Замечание. В запись ответа вошли два параметра n и k, которые независимо друг от друга «пробегают» множество целых чисел. Если попробовать при решении заданной системы воспользоваться только одним параметром, например n, то это приведет к потере решений. Таким образом, в каждом случае, когда система тригонометрических уравнений приводится к системе, состоящей из элементарных тригонометрических уравнений (то есть из уравнений вида sin x = a, cos x = a, tg x = a, ctg x = a), при решении каждого из этих уравнений необходимо использовать свой целочисленный параметр.

Вопросы для контроля

  1. Какие методы используются для решения систем тригонометрических уравнений?
  2. Объясните, в каком случае при формальном решении системы уравнений Решить систему уравнений показательное и тригонометрическоемы можем потерять часть решений, а в каком случае —получить посторонние решения. Решите эту систему.

Упражнения

Решите систему уравнений (1–8).

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем

Решить систему уравнений показательное и тригонометрическое

    Опубликовано 16.09.2020Подготовка к ЕГЭ

Видео:№17 Система показательного и тригонометрического уравнений. Подготовка к ЕГЭ по математике.Скачать

№17 Система показательного и тригонометрического уравнений. Подготовка к ЕГЭ по математике.

Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем

На сегодняшний день ЕГЭ по математике проходит в форме решения заданий, содержащихся в контрольно-измерительных материалах, при этом, ответы на задания выносят на отдельный бланк.

Уравнения могут быть следующих видов:

В данной статье рассмотрена профильная математика, а именно раздел по видам и системам рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений.

При решении уравнений нужно помнить основные термины:

— Корнем уравнения называют неизвестное число, которое нужно найти;

— Решение уравнения предполагает нахождение его корня;

— Уравнения, у которых совпадают решения называют равносильными;

— ОДЗ – область допустимых значений;

— Если возможно заменить переменные, то нужно это выполнить;

— После решения уравнения необходимо провести проверку на правильность нахождения корня.

Итак, рассмотрим каждый вид уравнений по отдельности, включая примеры решения.

  1. Рациональные уравнения – уравнения, у которых, как правило, слева расположено рациональное выражение, а справа – ноль.

Рациональным уравнением называют уравнение вида r(х)=0.

Если обе части уравнения являются рациональными выражениями, то рациональные уравнения называют целыми.

Дробно-рациональным называют уравнение, которое содержит дробное выражение.

Порядок действий при решении данного вида уравнения должен быть следующий:

— Все члены должны быть переведены в левую часть уравнения;

— Данную часть уравнения нужно представить в виде дроби p(x)/q(x);

— Для полученного решения нужно провести проверку, то есть.

При решение этого рационального уравнения понадобится формула (а-в)2=а2-2ав+в2.

Рассмотрим ещё один пример решения рационального уравнения:

На основе примеров показано, что рациональные уравнения могут быть с разным количеством переменных.

Иррациональными уравнениями считают уравнения с переменной под корнем. Для того, чтобы определить является ли уравнение иррациональным нужно просто посмотреть на корень переменной. Следует учитывать, что в некоторых учебниках по математике иррациональное уравнение определяют другим способом.

Способы решения таких уравнений:

— Возвести в степень обе части уравнения;

— Ввести новые переменные;

Пример решения уравнения по первому способу:

Пример решения по второму способу:

  1. Показательные уравнения

Решить систему уравнений показательное и тригонометрическое

Показательные уравнения – уравнение, содержащее неизвестный показатель.

В учебниках по математике разных авторов определение показательного уравнения может отличаться. Обычно такие отличия касаются незначительных деталей.

Как правило, это уравнения вида af(x)=ag(x), где а не равно одному и число а больше нуля. Из этого следует, что f(x)=g(x).

— Уравнение с одним основанием;

— Уравнение с равными основаниями.

Существует следующие способы решения таких уравнений:

— Использовать метод логарифмов;

— Привести уравнение к квадратному виду;

— Вынести за скобку общий множитель;

— Ввести новую переменную.

Итак, как решить показательное уравнение? Любое по сложности уравнение нужно привести в простую форму.

Рассмотрим наиболее простой пример решения показательного уравнения:

Для решения данного уравнения следует 2 возвести во вторую степень.

Решение даже простейших показательных уравнений имеет большую значимость. Поэтому далее вам будет легче решать уравнения более сложного уровня.

Данная тема является одной из самых сложных, поэтому следует внимательно подойти к изучению данной темы. Известны три формулы тригонометрических уравнений, запомнить которые не составляет особой сложности.

Наиболее простое тригонометрическое уравнение имеет вид sin x=a, cos x=a, tg x=а, а – число действительное.

Способы решения таких уравнений:

— Решение с помощью форму и приведение к простейшему;

— Ввод других переменных;

— Разложить уравнение по множителям.

Пример решения тригонометрического уравнения:

Здесь нужно рисовать окружность, далее выделить точки с координатой ½, соответственно, это точки 5п/6 и п/6. Если пройти по окружности, исходя из данных точек, то х=п/6+2пk, x=5п/6+2пn. При этом синус и косинус принадлежат промежутку [-1;1]. Если при решении уравнения в его правой части стоит число не принадлежащее промежутку, считается, что уравнение не имеет решения.

Также рассмотрим пример решения уравнения, разложив его по множителям.

Нужно применить формулу sin2x = 2sinxcosx.

2sinxcosx – sinx = 0.

sinx (2cosx – 1) = 0.

Таким образом, если один из множителей равен нулю, то решение уравнения также равно нулю.

Далее, sinx=0, x=пk.

  1. Логарифмические уравнения

Решить систему уравнений показательное и тригонометрическое

Особое значение имеет подготовка ЕГЭ по математике логарифмы, это обусловлено тем, что в КИМах чаще всего встречаются именно этого вида уравнения.

Логарифмическое уравнение – это уравнение с неизвестной величиной, находящейся внутри логарифма.

Примерами логарифмических уравнений являются уравнения следующего вида:

Способы решения уравнений данного вида:

— Применять способ уравнивания к единице;

— Применять способ умножать на единицу;

— Применять доступные правила логарифмов;

— Введение другого основания;

— Возвести в степень.

Самым простым логарифмическим уравнением принято считать уравнение вида log a x = b, при этом основание a>0,a≠1.

Пример решения уравнения:

Сначала следует найти значение области, то есть ОДЗ. При этом нужно помнить, что под логарифмом выражение всегда положительное. Воспользуемся логарифмическим определением, представим х степью основания 2 логарифма, степень будет равна 3.

Решение уравнения является ОДЗ, то есть корень уравнения найден.

Таким образом, подобное задание ЕГЭ по математике легко можно решить, зная логарифмы и способы их решения.

Оставить Комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Решить систему уравнений показательное и тригонометрическое

Видео:Показательные уравнения. 11 класс.Скачать

Показательные уравнения. 11 класс.

Выбери тему

Видео:Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Самые популярные записи

  • Решить систему уравнений показательное и тригонометрическоеНаука. Основные особенности научного мышления. Естественные и социально гуманитарные науки (3 293)
  • Решить систему уравнений показательное и тригонометрическоеЕГЭ по обществознанию: мышление и деятельность; потребности и интересы (2 238)
  • Решить систему уравнений показательное и тригонометрическоеСтроение растения. Стебель, лист и цветок. (2 196)
  • Решить систему уравнений показательное и тригонометрическоеСвобода и необходимость в человеческой деятельности. Свобода и ответственность. (2 189)

Решить систему уравнений показательное и тригонометрическое

Решить систему уравнений показательное и тригонометрическое

Решить систему уравнений показательное и тригонометрическое

Решить систему уравнений показательное и тригонометрическое

Решить систему уравнений показательное и тригонометрическое

Видео:10 класс. Алгебра. Решить уравнение (показательное или тригонометрическое) .Скачать

10 класс. Алгебра. Решить уравнение (показательное или тригонометрическое)  .

StudyWay

Видео:Решение тригонометрических уравнений и их систем. 10 класс.Скачать

Решение тригонометрических уравнений и их систем. 10 класс.

Помощь

© 2021 StudyWay. Все права защищены.

Ты можешь попробовать 3 наших закрытых занятия из курса «Прорыв».
Записаться можно через Instagram

Для этого напиши в Direct (в личку) кодовое слово «Пробный«

Видео:10 класс. Алгебра. Системы показательных уравнений.Скачать

10 класс. Алгебра.  Системы показательных уравнений.

Что за курс и что тебя там будет ждать?

12 мощнейших онлайн занятий по 2 часа в формате вебинаров.
Содержание вебинара: повторение предыдущей темы, теория, перерыв и практика.

Воркбук (рабочая тетрадь)абсолютно к каждому уроку со всей необходимой теорией к этой теме и практикой.

Решить систему уравнений показательное и тригонометрическое

Личный куратор это твой помощник во всех учебных вопросах.
Они занимаются проверкой твоих домашних заданий, поддерживают и мотивируют двигаться дальше, даже когда хочется сдаться.

Решить систему уравнений показательное и тригонометрическое

На собственной онлайн платформе тебя ждут
Домашние задания, которые необходимо решать после каждого занятия.
Все задания построены на базе создателей ЕГЭ — Котова / Лискова.

К каждому тестовому вопросу будет подробный разбор от главного куратора.
А задания, где необходимо оценить ответ (вторая часть) — будет проверять твой личный куратор и писать подробный комментарий про ошибки

Решить систему уравнений показательное и тригонометрическое

Общий чат единомышленников, поделенный на команды.
Название даете совместно (например «Воробушки»)

Ты будешь двигаться сообща с однокурсниками, поддерживая и мотивируя друг друга.
За лучшую командную успеваемость всей команде будут выделены призы в конце каждого месяца (скидка на обучение, стикерпаки и т.д).

Решить систему уравнений показательное и тригонометрическое

Личный помощник — это твой верный друг и помощник, который поможет тебе со всеми техническими вопросами, ответит на вопросы про поступление, да и просто может обсудить какие-то личные вопросы, поделиться переживаниями.

Решить систему уравнений показательное и тригонометрическое

Доступ к уникальной «Академии косатиков».

Там ты сможешь найти:
Банк теории, банк планов, банк аргументов, курсы по работе со всей второй частью, термины, курсы по саморазвитию, полезные лайфхаки и всю подробную информация о ЕГЭ.

Решить систему уравнений показательное и тригонометрическое

Игровая система на нашей платформе StudyWay👇

За выполнение заданий получаешь баллы (XP).

При достижении нового уровня у тебя открываются новые персонажи из Marvel, DC Comics, Игра престолов и Star Wars, а также на каждом новом уровне тебя ждут призы от нашей школы.

Решить систему уравнений показательное и тригонометрическое Решить систему уравнений показательное и тригонометрическое

Основная ценность курса
1. Изучение теории и практики с учетом изменений в ЕГЭ 2022
2. Заложение фундамента и основы предмета
3. Прохождение всей теории для первой части
4. Нарешивание всех возможных типов заданий
5. Повышение результата с 0 до 60 баллов

Решить систему уравнений показательное и тригонометрическое

Отличия тарифа «Стандарт от «Профи».

Дополнительные домашние задания
необходимо выполнять. Это значительно повысит твою успеваемость и улучшит показатели.

Дополнительное объяснение
твой личный куратор объяснит тебе тему повторно, если останется что-то не понятным

Групповые зачеты
у тебя будут зачеты с твоим личным куратором в мини группах по 5 человек. Там спрашиваются пройденные темы, термины и так далее.

Карта памяти
будешь восполнять все пройденные в удобной интеллект карте и в конце учебы у тебя выйдет файл с полноценной теорией по всем темам и разделам.

Персональный звонок куратору
1 раз в месяц ты можешь позвонить своему куратору и обсудить все волнующие тебя вопросы в течении 20 минут.

Секретный квест
1 раз в месяц ты будешь созваниваться с другим учеником курса и проводить совместные зачеты, тем самым познакомишься с новыми ребятами из других городов, уберешь страхи знакомства, повторишь и закрепишь пройденные темы.

Видео:Как решать такие системы показательных уравненийСкачать

Как решать такие системы показательных уравнений

Системы уравнений по-шагам

Видео:Решение тригонометрических уравнений методом вспомогательного углаСкачать

Решение тригонометрических уравнений методом вспомогательного угла

Результат

Примеры систем уравнений

  • Метод Гаусса
  • Метод Крамера
  • Прямой метод
  • Система нелинейных уравнений

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

💡 Видео

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Системы показательных уравнений и неравенств. Практика. Видеоуроки 13. Алгебра 10 классСкачать

Системы показательных уравнений и неравенств. Практика. Видеоуроки 13. Алгебра 10 класс

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

Самый короткий тест на интеллект Задача Массачусетского профессора

СИСТЕМЫ ПОКАЗАТЕЛЬНЫХ УРАВНЕНИЙ системы показательных неравенствСкачать

СИСТЕМЫ ПОКАЗАТЕЛЬНЫХ УРАВНЕНИЙ системы показательных неравенств

11 класс, 12 урок, Показательные уравненияСкачать

11 класс, 12 урок, Показательные уравнения

Как решать системы показательных уравнений. Урок№ 27Скачать

Как решать системы показательных уравнений.  Урок№ 27

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Показательные и логарифмические уравнения. Вебинар | МатематикаСкачать

Показательные и логарифмические уравнения. Вебинар | Математика

ЕГЭ по математике, задача C1: тригонометрия и показательное уравнениеСкачать

ЕГЭ по математике, задача C1: тригонометрия и показательное уравнение
Поделиться или сохранить к себе: