Решить систему нелинейных уравнений методом ньютона с точностью 0 001

Видео:4.2 Решение систем нелинейных уравнений. МетодыСкачать

4.2 Решение систем нелинейных уравнений. Методы

Метод Ньютона

Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Правила ввода функции, заданной в явном виде

  1. Примеры правильного написания F(x) :
    1. 10•x•e 2x = 10*x*exp(2*x)
    2. x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
    3. x 3 -x 2 +3 = x^3-x^2+3
    4. Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .

    Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
    Приближенное нахождение корней уравнения складывается из двух этапов:

    1. Отделение корней, то есть установление интервалов [αii] , в которых содержится один корень уравнения.
      1. f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
      2. f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
      3. f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
    2. Уточнение приближенных корней, то есть доведение их до заданной точности.

    Видео:МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать

    МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравнений

    Геометрическая интерпретация метода Ньютона (метод касательных)

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001

    Критерий завершения итерационного процесса имеет вид

    Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

    Метод Ньютона (метод касательных) Пример Решения

    5.1. Приближённое решение систем нелинейных уравнений. Метод Ньютона

    Рассмотрим нелинейную систему уравнений

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001(5.1)

    С действительными левыми частями. Систему (5.1) можно представить в матричном виде

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001(5.2)

    Здесь приняты следующие обозначения:

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001— вектор аргументов, а Решить систему нелинейных уравнений методом ньютона с точностью 0 001— вектор – функция.

    Для решения системы (5.2) воспользуемся методом последовательных приближений. Предположим, что найдено Р-ое приближение Xp = (X1(P), X2(P) , . Xn(P)) одного из изолированных корней X = (X1, X2, X3, . Xn) векторного уравнения (5.2). Тогда точный корень уравнения (5.2) можно представить в виде

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001(5.3)

    Где Решить систему нелинейных уравнений методом ньютона с точностью 0 001— поправка (погрешность) корня на N – ом шаге.

    Подставив выражение (5.3) в (5.2), получим

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001(5.4)

    Предположим, что функция F(X) — непрерывно дифференцируема в некоторой выпуклой области, содержащей X и X(P). Тогда левую часть уравнения (5.4) разложим в ряд Тейлора по степеням малого вектора ε(P), ограничиваясь линейными членами:

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001, (5.5)

    Или в развернутом виде:

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001(5.6)

    Из анализа формул (5.5) и (5.6) следует, что под производной F¢(X) следует понимать матрицу Якоби системы функций F1 , F2, . Fn, относительно переменных X1, X2, X3, . Xn, то есть:

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001Решить систему нелинейных уравнений методом ньютона с точностью 0 001. (5.7)

    Выражение (5.7) в краткой записи можно представить:

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001(5.8)

    Выражение (5.6) представляет собой линейную систему относительно поправок Решить систему нелинейных уравнений методом ньютона с точностью 0 001(I = 1, 2, . N) с матрицей W(X), поэтому формула (5.5) может быть записана в следующем виде:

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001(5.9)

    Отсюда, предполагая, что матрица W(X(P)) — неособенная, получим:

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001(5.10)

    Теперь, подставив выражение (5.10) в формулу (5.3), окончательно получим:

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001(5.11)

    Таким образом, получили вычислительную формулу (метод Ньютона), где в качестве нулевого приближения X(0) можно взять приближенное (грубое) значение искомого корня.

    Пример 5.1. Рассмотрим применение метода Ньютона на примере системы двух нелинейных уравнений

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001(5.12)

    Прежде чем разбирать конкретные шаги по решению системы (5.12), распишем в общем виде якобиан для системы из двух уравнений

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001

    Здесь A, B, C, D – функционалы от переменных X1, x2. Нас фактически интересует W-1. Пусть матрица W— неособенная, тогда обратная матрица вычисляется

    Решить систему нелинейных уравнений методом ньютона с точностью 0 001

    Теперь вернемся к системе (5.12). Графическое решение этой системы дает две точки пересечения: М1 (1.4; -1.5) и М2 (3.4; 2.2). Зададим начальное приближение:

    Видео:Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать

    Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14

    Нелинейные системы и уравнения

    В более общем случае мы имеем не одно уравнение (1), а систему нелинейных уравнений $$ begin tag f_i(x_1, x_2, ldots, x_n) = 0, quad i = 1, 2, ldots n. end $$ Обозначим через ( mathbf = (x_1, x_2, ldots, x_n) ) вектор неизвестных и определим вектор-функцию ( mathbf(mathbf) = (f_1(mathbf), f_2(mathbf), ldots, f_n(mathbf)) ). Тогда система (2) записывается в виде $$ begin tag mathbf(mathbf) = 0. end $$ Частным случаем (3) является уравнение (1) (( n = 1 )). Второй пример (3) — система линейных алгебраических уравнений, когда ( mathbf (mathbf) = A mathbf — mathbf ).

    Видео:Алгоритмы С#. Метод Ньютона для решения систем уравненийСкачать

    Алгоритмы С#. Метод Ньютона для решения систем уравнений

    Метод Ньютона

    Видео:Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравненийСкачать

    Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравнений

    Решение нелинейных уравнений

    При итерационном решении уравнений (1), (3) задается некоторое начальное приближение, достаточно близкое к искомому решению ( x^* ). В одношаговых итерационных методах новое приближение ( x_ ) определяется по предыдущему приближению ( x_k ). Говорят, что итерационный метод сходится с линейной скоростью, если ( x_ — x^* = O(x_k — x^*) ) и итерационный метод имеет квадратичную сходимость, если ( x_ — x^* = O(x_k — x^*)^2 ).

    В итерационном методе Ньютона (методе касательных) для нового приближения имеем $$ begin tag x_ = x_k + frac, quad k = 0, 1, ldots, end $$

    Вычисления по (4) проводятся до тех пор, пока ( f(x_k) ) не станет близким к нулю. Более точно, до тех пор, пока ( |f_(x_k)| > varepsilon ), где ( varepsilon ) — малая величина.

    Простейшая реализация метода Ньютона может выглядеть следующим образом:

    Чтобы найти корень уравнения ( x^2 = 9 ) необходимо реализовать функции

    Данная функция хорошо работает для приведенного примера. Однако, в общем случае могут возникать некоторые ошибки, которые нужно отлавливать. Например: пусть нужно решить уравнение ( tanh(x) = 0 ), точное решение которого ( x = 0 ). Если ( |x_0| leq 1.08 ), то метод сходится за шесть итераций.

    Теперь зададим ( x_0 ) близким к ( 1.09 ). Возникнет переполнение

    Возникнет деление на ноль, так как для ( x_7 = -126055892892.66042 ) значение ( tanh(x_7) ) при машинном округлении равно ( 1.0 ) и поэтому ( f^prime(x_7) = 1 — tanh(x_7)^2 ) становится равной нулю в знаменателе.

    Проблема заключается в том, что при таком начальном приближении метод Ньютона расходится.

    Еще один недостаток функции naive_Newton заключается в том, что функция f(x) вызывается в два раза больше, чем необходимо.

    Учитывая выше сказанное реализуем функцию с учетом следующего:

    1. обрабатывать деление на ноль
    2. задавать максимальное число итераций в случае расходимости метода
    3. убрать лишний вызов функции f(x)

    Метод Ньютона сходится быстро, если начальное приближение близко к решению. Выбор начального приближение влияет не только на скорость сходимости, но и на сходимость вообще. Т.е. при неправильном выборе начального приближения метод Ньютона может расходиться. Неплохой стратегией в случае, когда начальное приближение далеко от точного решения, может быть использование нескольких итераций по методу бисекций, а затем использовать метод Ньютона.

    При реализации метода Ньютона нужно знать аналитическое выражение для производной ( f^prime(x) ). Python содержит пакет SymPy, который можно использовать для создания функции dfdx . Для нашей задачи это можно реализовать следующим образом:

    Видео:Вычислительная математика. Лекция 4. Решение нелинейных уравнений и систем уравненийСкачать

    Вычислительная математика. Лекция 4. Решение нелинейных уравнений и систем уравнений

    Решение нелинейных систем

    Идея метода Ньютона для приближенного решения системы (2) заключается в следующем: имея некоторое приближение ( pmb^ ), мы находим следующее приближение ( pmb^ ), аппроксимируя ( pmb(pmb^) ) линейным оператором и решая систему линейных алгебраических уравнений. Аппроксимируем нелинейную задачу ( pmb(pmb^) = 0 ) линейной $$ begin tag pmb(pmb^) + pmb(pmb^)(pmb^ — pmb^) = 0, end $$ где ( pmb(pmb^) ) — матрица Якоби (якобиан): $$ pmb(pmb^) = begin frac<partial f_1(pmb^)> & frac<partial f_1(pmb^)> & ldots & frac<partial f_1(pmb^)> \ frac<partial f_2(pmb^)> & frac<partial f_2(pmb^)> & ldots & frac<partial f_2(pmb^)> \ vdots & vdots & ldots & vdots \ frac<partial f_n(pmb^)> & frac<partial f_n(pmb^)> & ldots & frac<partial f_n(pmb^)> \ end $$ Уравнение (5) является линейной системой с матрицей коэффициентов ( pmb ) и вектором правой части ( -pmb(pmb^) ). Систему можно переписать в виде $$ pmb(pmb^)pmb = — pmb(pmb^), $$ где ( pmb = pmb^ — pmb^ ).

    Таким образом, ( k )-я итерация метода Ньютона состоит из двух стадий:

    1. Решается система линейных уравнений (СЛАУ) ( pmb(pmb^)pmb = -pmb(pmb^) ) относительно ( pmb ).

    2. Находится значение вектора на следующей итерации ( pmb^ = pmb^ + pmb ).

    Для решения СЛАУ можно использовать приближенные методы. Можно также использовать метод Гаусса. Пакет numpy содержит модуль linalg , основанный на известной библиотеке LAPACK, в которой реализованы методы линейной алгебры. Инструкция x = numpy.linalg.solve(A, b) решает систему ( Ax = b ) методом Гаусса, реализованным в библиотеке LAPACK.

    Когда система нелинейных уравнений возникает при решении задач для нелинейных уравнений в частных производных, матрица Якоби часто бывает разреженной. В этом случае целесообразно использовать специальные методы для разреженных матриц или итерационные методы.

    Можно также воспользоваться методами, реализованными для систем линейных уравнений.

    🔍 Видео

    15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать

    15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравнения

    Метод касательных (метод Ньютона)Скачать

    Метод касательных (метод Ньютона)

    Метод Ньютона (касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать

    Метод Ньютона (касательных) Ручной счет Численные методы решения нелинейного уравнения

    МЗЭ 2021 Лекция 9 Метод Ньютона для решения нелинейных уравненийСкачать

    МЗЭ 2021 Лекция 9 Метод Ньютона для решения нелинейных уравнений

    10 Численные методы решения нелинейных уравненийСкачать

    10 Численные методы решения нелинейных уравнений

    Метод простых итераций пример решения нелинейных уравненийСкачать

    Метод простых итераций пример решения нелинейных уравнений

    10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравненияСкачать

    10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравнения

    Решение системы нелинейных уравнений графическим способом средствами ExcelСкачать

    Решение системы нелинейных уравнений графическим способом средствами Excel

    Решение нелинейного уравнения методом Ньютона (касательных) (программа)Скачать

    Решение нелинейного уравнения методом Ньютона (касательных) (программа)

    Численные методы решения нелинейного уравнени Теория Шаговый Метод половинного деления Метод НьютонаСкачать

    Численные методы решения нелинейного уравнени Теория Шаговый Метод половинного деления Метод Ньютона

    Численный метод Ньютона в ExcelСкачать

    Численный метод Ньютона в Excel

    ЧМ-1. Решение нелинейных уравнений. Часть 1/2Скачать

    ЧМ-1. Решение нелинейных уравнений. Часть 1/2

    После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать

    После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных Уравнений
Поделиться или сохранить к себе: