Решить систему дифференциальных уравнений онлайн матрицы

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Видео:Решение матричных уравненийСкачать

Решение матричных уравнений

Решение СЛАУ методом обратной матрицы

Напомним, что решением системы линейных уравнений называется всякая совокупность чисел <x1, x2, . xn> , подстановка которых в эту систему вместо соответствующих неизвестных обращает каждое уравнение системы в тождество.
Система линейных алгебраических уравнений обычно записывается как (для 3-х переменных):

2x1-3x2+x3 = 4
-x1+2x2+5x3 = 10
3x1-x2+3x3 = -1
или2x-3y+z = 4
-z+2y+5z = 10
3x-y+3z = -1

См. также Решение матричных уравнений.</x

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Алгоритм решения

  1. Вычисляется определитель матрицы A . Если определитель равен нулю, то конец решения. Система имеет бесконечное множество решений.
  2. При определителе отличном от нуля, через алгебраические дополнения находится обратная матрица A -1 .
  3. Вектор решения X =<x1, x2, . xn> получается умножением обратной матрицы на вектор результата B .

Пример №1 . Найти решение системы матричным методом. Запишем матрицу в виде:

231
-210
12-2

Вектор B:
B T = (3,-2,-1)
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆ = 2•(1•(-2)-2•0)-(-2•(3•(-2)-2•1))+1•(3•0-1•1) = -21
Итак, определитель -21 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Транспонированная матрица

A T =
2-21
312
10-2

Алгебраические дополнения.

A1,1 = (-1) 1+1
12
0-2
1,1 = (1•(-2)-0•2) = -2

A1,2 = (-1) 1+2
32
1-2
1,2 = -(3•(-2)-1•2) = 8

A1,3 = (-1) 1+3
31
10
1,3 = (3•0-1•1) = -1

A2,1 = (-1) 2+1
-21
0-2
2,1 = -(-2•(-2)-0•1) = -4

A2,2 = (-1) 2+2
21
1-2
2,2 = (2•(-2)-1•1) = -5

A2,3 = (-1) 2+3
2-2
10
2,3 = -(2•0-1•(-2)) = -2

A3,1 = (-1) 3+1
-21
12
3,1 = (-2•2-1•1) = -5

A3,2 = (-1) 3+2
21
32
3,2 = -(2•2-3•1) = -1

A3,3 = (-1) 3+3
2-2
31
3,3 = (2•1-3•(-2)) = 8

Обратная матрица:

A -1 = -1/21
-28-1
-4-5-2
-5-18

Вектор результатов X = A -1 • B

X = -1/21
-28-1
-4-5-2
-5-18
·
3
-2
-1

X T = (1,0,1)
x1 = -21 / -21 = 1
x2 = 0 / -21 = 0
x3 = -21 / -21 = 1
Проверка:
2•1+3•0+1•1 = 3
-2•1+1•0+0•1 = -2
1•1+2•0+-2•1 = -1

Запишем матрицу в виде:

Вектор B:
B T = (1,2,3,4)
Главный определитель
Минор для (1,1):

= 3•(3•2-6•2)-5•(3•2-6•1)+7•(3•2-3•1) = 3
Определитель минора
∆ = 2•(-3)-3•0+5•3-4•3 = -3

Вектор результатов X
X = A -1 ∙ B
Решить систему дифференциальных уравнений онлайн матрицы

Пример №3 . Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы. Сделать проверку полученного решения.
Решение:xls

Пример №4 . Записать систему уравнений в матричной форме и решить с помощью обратной матрицы.
Решение:xls

Пример №5 . Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера; 2) записать систему в матричной форме и решить ее средствами матричного исчисления.
Методические рекомендации. После решения методом Крамера, найдите кнопку «Решение методом обратной матрицы для исходных данных». Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется.
Решение. Обозначим через А — матрицу коэффициентов при неизвестных; X — матрицу-столбец неизвестных; B — матрицу-столбец свободных членов:

-130
3-21
21-1

Вектор B:
B T =(4,-3,-3)
С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B.
Если матрица А — невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А -1 . Умножив обе части уравнения на А -1 , получим: А -1 *А*Х = А -1 *B, А -1 *А=Е.
Это равенство называется матричной записью решения системы линейных уравнений. Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А -1 .
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆=-1•(-2•(-1)-1•1)-3•(3•(-1)-1•0)+2•(3•1-(-2•0))=14
Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Пусть имеем невырожденную матрицу А:

A=
a11a12a13
a21a22a23
a31a32a33

Тогда:

A=1/∆
A11A21A31
A12A22A32
A13A23A33

где Aij — алгебраическое дополнение элемента aij в определителе матрицы А, которое является произведением (—1) i+j на минор (определитель) n-1 порядка, полученный вычеркиванием i-й строки и j-го столбца в определителе матрицы А.
Транспонированная матрица

A T =
-132
3-21
01-1

Вычисляем алгебраические дополнения.

A1,1=(-1) 1+1
-21
1-1

1,1=(-2•(-1)-1•1)=1

A1,2=(-1) 1+2
31
0-1

1,2=-(3•(-1)-0•1)=3

A1,3=(-1) 1+3
3-2
01

1,3=(3•1-0•(-2))=3

A2,1=(-1) 2+1
32
1-1

2,1=-(3•(-1)-1•2)=5

A2,2=(-1) 2+2
-12
0-1

2,2=(-1•(-1)-0•2)=1

A2,3=(-1) 2+3
-13
01

2,3=-(-1•1-0•3)=1

A3,1=(-1) 3+1
32
-21

3,1=(3•1-(-2•2))=7

A3,2=(-1) 3+2
-12
31

3,2=-(-1•1-3•2)=7

A3,3=(-1) 3+3
-13
3-2

3,3=(-1•(-2)-3•3)=-7
Обратная матрица

A -1 =1/14
133
511
77-7

Вектор результатов X
X=A -1 • B

X=1/14
133
511
77-7
·
4
-3
-3
X=1/14
-3))
X=1/14
-14
14
28

X T =(-1,1,2)
x1= -14 / 14=-1
x2= 14 / 14=1
x3= 28 / 14=2
Проверка.
-1•-1+3•1+0•2=4
3•-1+-2•1+1•2=-3
2•-1+1•1+-1•2=-3
doc:xls
Ответ: -1,1,2.

Пример №6 . Решить неоднородную систему линейных алгебраических уравнений методом обратной матрицы.

Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы.

Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) матричным методом (методом обратной матрицы), вы сможете очень просто и быстро найти решение системы.

Воспользовавшись онлайн калькулятором для решения систем линейных уравнений матричным методом (методом обратной матрицы), вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.

Видео:Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"

Решить систему линейных уравнений матричным методом

Изменить названия переменных в системе

Заполните систему линейных уравнений:

Ввод данных в калькулятор для решения систем линейных уравнений матричным методом

  • В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
  • Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа.
  • Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
  • Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.

Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2

будет вводится в калькулятор следующим образом:

Дополнительные возможности калькулятора для решения систем линейных уравнений матричным методом

  • Между полями для ввода можно перемещаться нажимая клавиши «влево», «вправо», «вверх» и «вниз» на клавиатуре.
  • Вместо x 1, x 2, . вы можете ввести свои названия переменных.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

🎦 Видео

Матрица интенсивностей. Система уравнений КолмогороваСкачать

Матрица интенсивностей. Система уравнений Колмогорова

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy

Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

ДУ Линейные системыСкачать

ДУ Линейные системы

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений

ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

Математика это не ИсламСкачать

Математика это не Ислам

Системы дифференциальных уравнений. Часть 2Скачать

Системы дифференциальных уравнений. Часть 2

Система дифференциальных уравнений. Операционный методСкачать

Система дифференциальных уравнений. Операционный метод

Фундаментальная система решений системы линейных уравнений ФСР СЛАУСкачать

Фундаментальная система решений системы линейных уравнений ФСР СЛАУ
Поделиться или сохранить к себе: