Алгебраическое уравнение 2-й степени иначе называется квадратным. Наиболее общий вид квадратного уравнения с одним неизвестным есть
где a, b, c — данные числа или буквенные выражения, содержащие известные величины (причем коэффициент а не может быть равен нулю, иначе уравнение будет не квадратным, а 1-й степени).. Разделив обе его части на a, мы получим уравнение вида
(p = b/a; q = c/a).
Квадратное уравнение такого вида называется приведенным; уравнение ах 2 + bx + c = 0 (где а ≠ 0), называется неприведенным. Если одна из величин b, с или обе вместе равны нулю, то квадратное уравнение называется неполным; если и b и с не равны нулю, квадратное уравнение называется полным.
Примеры
3x 2 + 8x -5 = 0 – полное неприведенное квадратное уравнение;
3x 2 – 5 = 0 – неполное неприведенное квадратное уравнение;
x 2 – ax = 0 – неполное приведенное квадратное уравнение;
x 2 – 12x +7 = 0 – полное приведенное квадратное уравнение.
Неполное квадратное уравнение вида
x 2 = m (m – известная величина)
является самым простым типом квадратного уравнения и вместе с тем очерь важным, так как к нему приводится решение всякого квадратного уравнения. Решение этого уравнения имеет вид
Возможны три случая:
1) Если m = 0, то и x = 0.
2) Если m – положительное число, то его квадратный корень может иметь два значения: одно положительное, другое отрицательное. Абсолютные величины этих значений одинаковы. Например, уравнение x 2 = 9 удовлетворяется значением х = + 3 и х = — 3. Другими словами, x имеет два значения: +3 и — 3. Часто это выражают тем, что перед радикалом ставят два знака – плюс и минус.
При таком написании подразумевается, что выражение обозначает общую абсолютную величину-двух значений корня; в нашем примере — число 3. Величина может быть иррациональным чиcлом. Заметим, что и само m может быть иррациональным числом. Например, пусть требуется решить уравнение
(геометрически это означает найти длину стороны квадрата равного по площади кругу с радиусом 1). Его корень x = √π.
3) Если m — отрицательное число, то уравнение х 2 = m (например, х 2 = — 9) не может иметь никакого положительного и никакого отрицательного корня: ведь и положительное и отрицательное число по возведении в квадрат дает положительное число. Таким образом, можно сказать, что уравнение х 2 = — 9 не имеет решений, т.е. число не существует.
Но с таким же основанием до введения отрицательных чисел можно было говорить, что и уравнение 2x + 6 = 4 не имеет решений. Однако после введения отрицательных чисел это уравнение стало разрешимым. Точно так же уравнение х 2 = — 9, не имеющее решений среди положительных и отрицательных чисел, становится разрешимым после введения новых величин — квадратных корней из отрицательных чисел. Эти величины были впервые введены итальянским математиком Кардано в середине 16 века в связи с решением кубического уравнения. Кардано назвал эти числа «софистическими» (т. е. «мудреными»). Декарт в 30-х годах 17 века ввел наименование «мнимые числа», которое, к сожалению, удерживается до сих пор. В противоположность мнимым числам прежде известные числа (положительные и отрицательные, в том числе иррациональные) стали называть действительными или вещественными. Сумма действительного и мнимого числа называется комплексным числом*.Часто и комплексные числа называют мнимыми.
Введя в рассмотрение мнимые числа, можно сказать, что неполное квадратное уравнение x 2 = m всегда имеет два корня. Если m > 0, эти корни действительны, они имеют одинаковую абсолютную величину и различны по знаку. Если m = 0, оба они равны нулю; если m *Этот термин введен Гауссом в 1831 г. Слово «комплексный» означает в переводе «совокупный».
Видео:Комплексные корни квадратного уравненияСкачать
Решить квадратное уравнение с мнимой единицей
. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i — это комплексная единица (после того как ввели уравнение и нажали кнопку «решить»), нажимаете кнопку под формой «Обновить» и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке
© Контрольная работа РУ — примеры решения задач
Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать
Числа. Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями.
Рассматривать будем на таком примере:
Если говорить о действительных числах, то, вы знаете, что корень из отрицательного числа нельзя извлекать. Однако в комплексных числах можно. Если конкретнее, 2 корня:
Выполним проверку того, что эти корни и права оказываются решением уравнения:
Что и требовалось доказать.
Зачастую используют сокращенную запись, корни записывают в одну строчку в таком виде: .
Такие корни являются сопряженными комплексными корнями.
Теперь вы знаете как можно извлечь квадратный корень из отрицательного числа. Приведем еще несколько примеров:
, ,
,
,
В каждом случае получаем 2 сопряженных комплексных корня.
Решим квадратное уравнение .
Первым шагом определим дискриминант уравнения:
В нашем случае дискриминант оказался отрицательным, и в случае с действительными числами у уравнения нет решений, но у нас вариант с комплексными числами, поэтому можем продолжать решение:
Как известно из формул дискриминанта у нас образуется 2 корня:
– сопряженные комплексные корни
Т.о., у уравнения есть 2 сопряженных комплексных корня:
,
Теперь можно решить любое квадратное уравнение!
У любого уравнения с многочленом n-ой степени есть ровно n корней, некоторые из них могут быть комплексными.
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Как извлечь корень из произвольного комплексного числа?
Рассмотрим уравнение z n = w, либо, записав в другом виде: . Здесь n может принимать всякое натуральное значение, которое больше 1-цы.
В частности, при n = 2 получаем квадратный корень .
У уравнения типа есть ровно n корней z0, z1, z2, … zn-1, которые можно вычислить с помощью формулы:
,
где – это модуль комплексного числа w,
φ – его аргумент,
а параметр k принимает значения: .
Найдем корни уравнения: .
Перепишем уравнение как: .
В этом примере , , поэтому у уравнения будет 2 корня: z0 и z1. Детализируем общую формулу:
, .
Далее найдем модуль и аргумент комплексного числа :
Число w находится в 1-ой четверти, значит:
Помним, что определяя тригонометрическую форму комплексного числа лучше делать чертеж.
Детализируем еще немного общую формулу:
, .
Так подобно расписывать не обязательно. Здесь мы это сделали, что бы было ясно откуда что образовалось.
Подставляем в формулу значение k = 0 и получаем 1-й корень:
.
Подставляем в формулу значение k = 1 и получаем 2-й корень:
.
Ответ: ,
Если необходимо, корни, которые мы получили можно перевести обратно в алгебраическую форму.
Часто вычисленные корни нужно изобразить геометрически:
Как выполнить чертеж?
Для начала на калькуляторе вычисляем, чему равен модуль корней и чертим с помощью циркуля окружность этого радиуса. Все корни будем откладывать на данной окружности.
Далее берем аргумент 1-го корня и вычисляем, чему равен угол в градусах:
.
Отмеряем транспортиром 45° и ставим на чертеже точку z0.
Берем аргумент 2-го корня и переводим его тоже в градусы: . Отмеряем транспортиром 165° и ставим на чертеже точку z1.
По этому же алгоритму ставим точку z2.
Видно, что корни располагаются геометрически правильно с интервалом между радиус-векторами. Чертеж обязательно делать при помощи транспортира.
💡 Видео
Вы умеете решать квадратные уравнения?Скачать
Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
Комплексные корни квадратных уравнений. 11 класс.Скачать
Как мнимые числа спасли математику [Veritasium]Скачать
10 класс, 35 урок, Комплексные числа и квадратные уравненияСкачать
Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Квадратное уравнение. Как решить? | Математика ОГЭ 2023 | УмскулСкачать
Отрицательный дискриминантСкачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать
Быстрый способ решения квадратного уравненияСкачать
Неполные квадратные уравнения. Алгебра, 8 классСкачать
КВАДРАТНОЕ УРАВНЕНИЕ дискриминантСкачать
КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать
Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать
Алгебра 9 класс. 8 сентября. квадратные уравненияСкачать
Как решать квадратные уравнения без дискриминантаСкачать