Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.
Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.
- Решение двучленного уравнения четвертой степени
- Решение возвратного уравнения четвертой степени
- Решение биквадратного уравнения
- Решение уравнений четвертой степени с рациональными корнями
- Решение уравнений четвертой степени по методу Феррари
- Алгебра
- Иррациональные уравнения
- Простейшие иррациональные уравнения
- Уравнения с двумя квадратными корнями
- Введение новых переменных
- Замена иррационального уравнения системой
- Уравнения с «вложенными» радикалами
- Иррациональные неравенства
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение иррациональных уравнений и неравенств.
- Немного теории.
- Решение иррациональных уравнений и неравенств
- 1. Иррациональные уравнения
- 2. Иррациональные неравенства
- 🎬 Видео
Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Решение двучленного уравнения четвертой степени
Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .
Для решения этого типа уравнений применяются формулы сокращенного умножения:
A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A — 2 B A x 2 = 0 x 2 + B A 2 — 2 B A x 2 = 0 x 2 — 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0
Остается лишь найти корни квадратных трехчленов.
Решить уравнение четвертой степени 4 x 4 + 1 = 0 .
Решение
Для начала проведем разложение многочлена 4 x 4 + 1 на множители:
4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = ( 2 x 2 + 1 ) 2 — 4 x 2 = 2 x 2 — 2 x + 1 ( 2 x 2 + 2 x + 1 )
Теперь найдем корни квадратных трехчленов.
2 x 2 — 2 x + 1 = 0 D = ( — 2 ) 2 — 4 · 2 · 1 = — 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 — D 2 · 2 = 1 2 — i
2 x 2 + 2 x + 1 = 0 D = 2 2 — 4 · 2 · 1 = — 4 x 3 = — 2 + D 2 · 2 = — 1 2 + i x 4 = — 2 — D 2 · 2 = — 1 2 — i
Мы получили четыре комплексных корня.
Ответ: x = 1 2 ± i и x = — 1 2 ± i .
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Решение возвратного уравнения четвертой степени
Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0
х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:
A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0
Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2 :
A x 2 + 1 x 2 + B x + 1 x + C = 0 A ( y 2 — 2 ) + B y + C = 0 A y 2 + B y + C — 2 A = 0
Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.
Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .
Решение
Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :
2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0
2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0
Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2
2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 — 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0
Решим полученное квадратное уравнение:
D = 2 3 + 2 2 — 4 · 2 · 6 = 12 + 4 6 + 2 — 8 6 = = 12 — 4 6 + 2 = 2 3 — 2 2 y 1 = — 2 3 — 2 + D 2 · 2 = — 2 3 — 2 + 2 3 — 2 4 = — 2 2 y 2 = — 2 3 — 2 — D 2 · 2 = — 2 3 — 2 — 2 3 + 2 4 = — 3
Вернемся к замене: x + 1 x = — 2 2 , x + 1 x = — 3 .
Решим первое уравнение:
x + 1 x = — 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 — 4 · 2 · 2 = — 14 x 1 = — 2 — D 2 · 2 = — 2 4 + i · 14 4 x 2 = — 2 — D 2 · 2 = — 2 4 — i · 14 4
Решим второе уравнение:
x + 1 x = — 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 — 4 · 1 · 1 = — 1 x 3 = — 3 + D 2 = — 3 2 + i · 1 2 x 4 = — 3 — D 2 = — 3 2 — i · 1 2
Ответ: x = — 2 4 ± i · 14 4 и x = — 3 2 ± i · 1 2 .
Видео:Иррациональное уравнение 4(!) степени | Параметр 135 | mathus.ru #егэ2024Скачать
Решение биквадратного уравнения
Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.
Решить биквадратное уравнение 2 x 4 + 5 x 2 — 3 = 0 .
Решение
Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:
2 y 2 + 5 y — 3 = 0 D = 5 2 — 4 · 2 · ( — 3 ) = 49 y 1 = — 5 + D 2 · 2 = — 5 + 7 4 = 1 2 y 2 = — 5 — D 2 · 2 = — 5 — 7 4 = — 3
Следовательно, x 2 = 1 2 или x 2 = — 3 .
Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .
Ответ: x = ± 1 2 и x = ± i · 3 .
Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .
Решение
Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:
16 y 2 + 145 y + 9 = 0 D = 145 2 — 4 · 16 · 9 = 20449 y 1 = — 145 + D 2 · 16 = — 145 + 143 32 = — 1 16 y 2 = — 145 — D 2 · 16 = — 145 — 143 32 = — 9
Поэтому, в силу замены переменной, x 2 = — 1 16 или x 2 = — 9 .
Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .
Видео:10 класс. Алгебра. Решение иррациональных уравнений.Скачать
Решение уравнений четвертой степени с рациональными корнями
Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».
Видео:8 класс, 38 урок, Иррациональные уравненияСкачать
Решение уравнений четвертой степени по методу Феррари
Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 , у которых подкоренное выражение является полным квадратом.
Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.
Найти корни уравнения x 4 + 3 x 3 + 3 x 2 — x — 6 = 0 .
Решение
Имеем А = 3 , В = 3 , С = — 1 , D = — 6 . Применим метод Феррари для решения данного уравнения.
Составим и решим кубическое уравнение:
y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 y 3 — 3 y 2 + 21 y — 19 = 0
Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 — 3 · 1 2 + 21 · 1 — 19 = 0 .
Запишем два квадратных уравнения:
x 2 + A 2 x + y 0 2 ± A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0
x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 — 1 2 x — 5 2 = 0
x 2 + 2 x + 3 = 0 или x 2 + x — 2 = 0
Корнями первого уравнения будут x = — 1 ± i · 2 , корнями второго х = 1 и х = — 2 .
Ответ: x 1 , 2 = — 1 ± i 2 , x 3 = 1 , x 4 = — 2 .
Видео:Уравнения с корнем. Иррациональные уравнения #shortsСкачать
Алгебра
План урока:
Видео:Уравнение четвертой степениСкачать
Иррациональные уравнения
Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.
Приведем примеры иррациональных ур-ний:
Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести
Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.
Видео:Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать
Простейшие иррациональные уравнения
Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:
где а – некоторое число (константа), f(x) – рациональное выражение.
Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:
Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии
n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.
Пример. Решите ур-ние
Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.
Ответ: корней нет.
Пример. Решите ур-ние
Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:
Пример. Решите ур-ние
Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:
Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).
Пример. Найдите решение ур-ния
Решение. Возведем обе части в пятую степень:
х 2 – 14х – 32 = 0
Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:
D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324
Итак, нашли два корня: (– 2) и 16.
Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.
Пример. Решите ур-ние
Решение. Возводим обе части во вторую степень:
х – 2 = х 2 – 8х + 16
D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9
Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):
при х = 3 х – 4 = 3 – 4 = – 1
при х = 6 6 – 4 = 6 – 4 = 2
Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.
Пример. Решите ур-ние
Решение. Здесь используется кубический корень, а потому возведем обе части в куб:
3х 2 + 6х – 25 = (1 – х) 3
3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3
Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:
Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.
Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:
при х = 2 1 – х = 1 – 2 = – 1
Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:
Видео:10 класс. Алгебра. Решение иррациональных уравнений.Скачать
Уравнения с двумя квадратными корнями
Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.
Пример. Решите ур-ние
Решение. Перенесем вправо один из корней:
Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:
Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:
Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:
(2х – 4) 2 = 13 – 3х
4х 2 – 16х + 16 = 13 – 3х
4х 2 – 13х + 3 = 0
D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121
Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:
Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3
На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.
Видео:10 класс. Алгебра. Иррациональные уравнения.Скачать
Введение новых переменных
Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние
Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.
Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:
х 1/2 – 10х 1/4 + 9 = 0
Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид
Это квадратное ур-ние. Найдем его корни:
D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64
Получили два значения t. Произведем обратную замену:
х 1/4 = 1 или х 1/4 = 9
Возведем оба ур-ния в четвертую степень:
(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4
х = 1 или х = 6561
Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:
В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.
Пример. Решите ур-ние
х 1/3 + 5х 1/6 – 24 = 0
Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:
Его корни вычислим через дискриминант:
D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121
Далее проводим обратную заменуx 1/6 = t:
х 1/6 = – 8 или х 1/6 = 3
Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.
Видео:Система иррациональных уравнений #4Скачать
Замена иррационального уравнения системой
Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.
Пример. Решите ур-ние
Решение. Заменим первый корень буквой u, а второй – буквой v:
Исходное ур-ние примет вид
Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:
Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:
Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:
(х + 6) + (11 – х) = u 3 + v 2
из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:
17 = u 3 + (5 – u) 2
17 = u 3 + u 2 – 10u + 25
u 3 + u 2 – 10u + 8 = 0
Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа
подставим полученные значения в (4):
x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3
x + 6 = 1 или х + 6 = 8 или х + 6 = – 64
х = – 5 или х = 2 или х = – 70
Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим
Корень подошел. Проверяем следующее число, х = 2:
Корень снова оказался верным. Осталась последняя проверка, для х = – 70:
Итак, все три числа прошли проверку.
Видео:Решение иррациональных уравнений.Скачать
Уравнения с «вложенными» радикалами
Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:
При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:
Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:
Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:
Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:
Возводим в квадрат и получаем:
х 2 + 40 = (х + 4) 2
х 2 + 40 = х 2 + 8х + 16
И снова нелишней будет проверка полученного корня:
Видео:Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столбиСкачать
Иррациональные неравенства
По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:
Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.
Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида
Может быть справедливым только тогда, когда
То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во
при четном n можно заменить системой нер-в
Пример. При каких значениях x справедливо нер-во
Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:
х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)
Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во
чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.
Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.
Пример. Найдите решение нер-ва
Решение. Всё очень просто – надо всего лишь возвести обе части в куб:
x 2 – 7x– 8 2 – 7x– 8 = 0
D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81
Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:
Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.
Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.
Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид
Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.
Пример. Решите нер-во
Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):
И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:
D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9
Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.
стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:
f(x) > 0 (подкоренное выражение не может быть отрицательным);
g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).
Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.
Пример. Решите нер-во
Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим
х 2 – 10х + 21 > 0(1)
Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:
Во-вторых, выражение 4 – х не может быть отрицательным:
Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):
Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:
Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:
Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:
Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:
Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).
Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3
Видео:Ограничения в иррациональных уравнениях #shorts #ЕГЭ #ОГЭ #математика #подготовкакегэ #егэматематикаСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Иррациональные уравнения. 10 класс.Скачать
Калькулятор онлайн.
Решение иррациональных уравнений и неравенств.
Этот математический калькулятор онлайн поможет вам решить иррациональное уравнение или неравенство. Программа для решения иррациональных уравнений и неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> sqrt(x) — квадратный корень x
x^(1/n) — корень степени n
Введите иррациональное уравнение или неравенство
Решить уравнение или неравенство
Видео:Иррациональные уравнения #4Скачать
Немного теории.
Видео:10 класс. Алгебра. Решение иррациональных уравнений.Скачать
Решение иррациональных уравнений и неравенств
Видео:Ещё один приём решения иррациональных уравнений с корнем третьей степениСкачать
1. Иррациональные уравнения
Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень. Для таких уравнений ищут, как правило, только действительные корни.
Основной метод решения иррациональных уравнений — метод возведения обеих частей уравнения в одну и ту же степень. При этом следует иметь в виду, что возведение обеих частей уравнения в одну и ту же нечётную степень есть равносильное преобразование уравнения, а в чётную — НЕравносильное. Значит, основные принципиальные трудности связаны с возведением обеих частей уравнения в одну и ту же чётную степень, когда из-за неравносильности преобразования могут появиться посторонние корни, а потому обязательна проверка всех найденных корней.
ПРИМЕР 1.
( sqrt[Large6normalsize] = sqrt[Large6normalsize] )
Возведя обе части уравнения в шестую степень, получим:
( x^2-5x = 2x-6 Rightarrow )
( x^2-7x +6= 0 Rightarrow )
( x_1=1, ; x_2=6 )
Проверка. «Хорошие» корни можно проверить непосредственной подстановкой в исходное уравнение. При x = 1 заданное уравнение принимает вид ( sqrt[Large6normalsize] = sqrt[Large6normalsize] ), во множестве действительных чисел такое «равенство» не имеет смысла. Значит, 1 — посторонний корень, он появился по причине расширения ОДЗ уравнения после возведения в шестую степень. При х = 6 заданное уравнение принимает вид ( sqrt[Large6normalsize] = sqrt[Large6normalsize] ) — это верное равенство.
Итак, уравнение имеет единственный корень: х = 6.
Ответ: х = 6
Введя новую переменную ( u=x^2-x), получим существенно более простое иррациональное уравнение:
( sqrt+sqrt = sqrt ).
Возведём обе части уравнения в квадрат:
( (sqrt+sqrt)^2 = (sqrt)^2 Rightarrow )
( u+2 +2sqrtsqrt +u+7 = 2u+21 Rightarrow )
( sqrt = 6 Rightarrow )
( u^2+9u+14=36 Rightarrow )
( u^2+9u-22=0 Rightarrow )
( u_1=2, ; u_2=-11 )
Проверка найденных значений их подстановкой в уравнение ( sqrt+sqrt = sqrt ) показывает, что ( u_1=2 ) — корень уравнения, а ( u_2=-11 ) — посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение ( x^2-x=2 Rightarrow x^2-x-2=0 ), решив которое находим два корня: ( x_1=2, ; x_2=-1 )
Ответ: 2; -1.
Уединение корня и возведение обеих частей уравнения в квадрат привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, можно заметить, что уравнение легко сводится к квадратному. Действительно, умножим обе его части на 2:
( 2x^2 +6 -2sqrt = 3x+12 Rightarrow )
( 2x^2 -3x +2 -2sqrt -8 = 0 Rightarrow )
Введя новую переменную ( y=sqrt ), получим: ( y^2-2y-8=0 ), откуда ( y_1=4, ; y_2=-2 ). Значит, исходное уравнение равносильно следующей совокупности уравнений:
( left[begin sqrt =4 \ sqrt = -2 endright. )
Из первого уравнения этой совокупности находим: ( x_1=35; ; x_2=-2 ). Второе уравнение корней не имеет.
Проверка. Так как совокупность уравнений равносильна исходному уравнению, причём второе уравнение этой совокупности корней не имеет, то найденные корни можно проверить подстановкой в уравнение ( sqrt =4). Эта подстановка показывает, что оба найденных значения x являются корнями этого уравнения, а значит, и исходного уравнения.
Ответ: 3,5; -2.
Областью определения уравнения является луч ( [5; ; +infty) ). В этой области выражение ( sqrt ) можно представить следующим образом: ( sqrt = sqrtsqrt ). Теперь уравнение можно переписать так:
( x+x -5 +2sqrtsqrt +2sqrt +2sqrt -48 = 0 Rightarrow ) ( (sqrt)^2 +2sqrtsqrt +(sqrt)^2 +2(sqrt+sqrt) -48 = 0 Rightarrow ) ( (sqrt +sqrt)^2 +2(sqrt+sqrt) -48 = 0 )
Введя новую переменную ( y= sqrt +sqrt ), получим квадратное уравнение ( y^2+2y-48=0 ), из которого находим: ( y_1=6, ; y_2=-8 ). Таким образом, задача свелась к решению совокупности уравнений:
( left[begin sqrt +sqrt =6 \ sqrt +sqrt = -8 endright. )
Из первого уравнения совокупности находим ( x= left( frac right)^2 ), второе уравнение совокупности решений явно не имеет.
Проверка. Нетрудно проверить (подстановкой), что ( x= left( frac right)^2 ) — является корнем уравнения ( sqrt +sqrt =6 ). Но это уравнение равносильно исходному уравнению, значит, ( x= left( frac right)^2 ) — является корнем и исходного уравнения.
Ответ: ( x= left( frac right)^2 )
Иногда при решении иррациональных уравнений оказывается удобным ввести две новые переменные.
ПРИМЕР 5.
( sqrt[Large4normalsize] + sqrt[Large4normalsize] =2 )
Введём новые переменные: ( left<begin u=sqrt[Large4normalsize] \ v=sqrt[Large4normalsize] endright. )
Тогда уравнение примет вид (u+v=2). Но для нахождения значений двух новых переменных одного уравнения недостаточно. Возведя в четвёртую степень обе части каждого из уравнений системы, получим:
( left<begin u^4=1-x \ v^4= 15+x endright. )
Сложим уравнения последней системы: (u^4 +v^4 =16). Таким образом, для нахождения u, v мы имеем следующую симметрическую систему уравнений:
( left<begin u+v=2 \ u^4 +v^4 =16 endright. )
Решив её, находим: ( left<begin u_1=0 \ v_1 =2; endright. ) ( left<begin u_2=2 \ v_2 =0 endright. )
Таким образом, исходное уравнение свелось к следующей совокупности систем уравнений: ( left<begin sqrt[Large4normalsize] =0 \ sqrt[Large4normalsize] =2; endright. ) ( left<begin sqrt[Large4normalsize] =2 \ sqrt[Large4normalsize] =0 endright. )
Решив эту совокупность, находим: (x_1=1, ; x_2=-15 )
Проверка. Проще всего проверить найденные корни непосредственной подстановкой в заданное уравнение. Проделав это, убеждаемся, что оба значения являются корнями исходного уравнения.
Ответ: 1; -15.
ПРИМЕР 6.
( sqrt[Large3normalsize] + sqrt[Large3normalsize] = sqrt[Large3normalsize] )
Возведём обе части уравнения в куб:
( 2x+1 + 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] + 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] +6x+1 = 2x-1 Rightarrow ) ( 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] cdot (3sqrt[Large3normalsize] + sqrt[Large3normalsize] ) = -6x-3 )
Воспользовавшись исходным уравнением, заменим сумму ( sqrt[Large3normalsize] + sqrt[Large3normalsize] ) на выражение ( sqrt[Large3normalsize] ):
( 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] cdot sqrt[Large3normalsize] = -6x-3 Rightarrow )
( 3sqrt[Large3normalsize] = -2x-1 )
Возведём обе части в куб:
( (2x+1)(6x+1)(2x-1) = -(2x+1)^3 Rightarrow )
( (2x+1)((6x+1)(2x-1) + (2x+1)^2) =0 Rightarrow )
( 16x^2(2x+1) =0 Rightarrow )
( x_1= -05; ; x_2=0 )
Проверка. Подстановкой найденных значений x в исходное уравнение убеждаемся, что его корнем является только x = -0,5.
Ответ: -0,5.
Видео:✓ Иррациональное уравнение | ЕГЭ-2018. Задание 12. Математика. Профильный уровень | Борис ТрушинСкачать
2. Иррациональные неравенства
Рассмотрим иррациональное неравенство вида ( sqrt 0 ). Осталось лишь заметить, что при одновременном выполнении указанных выше условий обе части заданного иррационального неравенства неотрицательны, а потому их возведение в квадрат представляет собой равносильное преобразование неравенства.
Таким образом, иррациональное неравенство ( sqrt 0 \ f(x) 0 \ x^2-x-12 0 \ x > -12 endright. )
Получаем: ( x geqslant 4)
Ответ: ( x geqslant 4)
Рассмотрим теперь неравенство вида ( sqrt > g(x) ).
Ясно, во-первых, что его решения должны удовлетворять условию ( f(x) geqslant 0 ).
Во-вторых, замечаем, что при ( g(x) g(x) ) не вызывает сомнений.
В-третьих, замечаем, что если ( g(x) geqslant 0 ), то можно возвести в квадрат обе части заданного иррационального неравенства.
Таким образом, иррациональное неравенство ( sqrt > g(x) ) равносильно совокупности систем неравенств:
( left<begin f(x) geqslant 0 \ g(x) (g(x))^2 endright. )
Во второй системе первое неравенство является следствием третьего, его можно не писать.
Данное неравенство равносильно совокупности систем неравенств:
( left<begin x^2-x-12 geqslant 0 \ x 0 )
Преобразуем неравенство к виду ( x^2+3x-10 +3sqrt >0 ) и введём новую переменную ( y= sqrt ). Тогда последнее неравенство примет вид ( y^2+3y-10 >0 ), откуда находим, что либо (y 2).
Таким образом, задача сводится к решению совокупности двух неравенств:
( left[begin sqrt 2 endright. )
Первое неравенство не имеет решений, а из второго находим:
( x^2+3x >4 Rightarrow )
( (x+4)(x-1) >0 Rightarrow )
( x 1 )
Ответ: ( x 1 ).
🎬 Видео
Иррациональные уравнения и их системы. 11 класс.Скачать