Содержание:
- Прямоугольная система координат на плоскости и ее применение к простейшим задачам
- Прямоугольные координаты точки на плоскости
- Преобразование прямоугольной системы координат
- Расстояние между двумя точками на плоскости
- Деление отрезка в данном отношении
- Площадь треугольника
- Аналитическая геометрия на плоскости с примерами решения и образцами выполнения
- Прямоугольная система координат
- Простейшие задачи аналитической геометрии на плоскости
- Полярные координаты
- Преобразование прямоугольных координат
- Уравнение линии на плоскости
- Линии первого порядка
- Уравнение прямой, проходящей через две данные точки
- Угол между двумя прямыми
- Условия параллельности и перпендикулярности двух прямых
- Общее уравнение прямой
- Неполное уравнение первой степени. Уравнение прямой «в отрезках»
- Нормальное уравнение прямой. Расстояние от точки до прямой
- Линии второго порядка
- Эллипс
- Директрисы эллипса и гиперболы
- Парабола
- Декартовы системы координат. Простейшие задачи
- Полярные координаты
- Линии первого порядка
- Линии второго порядка
- Окружность
- Эллипс
- Гипербола
- Парабола
- Приведение общего уравнения кривой второго порядка к каноническому виду
- Система координат на плоскости
- Основные приложения метода координат на плоскости
- Расстояние между двумя точками
- Деление отрезка в данном отношении
- Площадь треугольника
- Преобразование системы координат
- Параллельный перенос осей координат
- Поворот осей координат
- Линии на плоскости
- Уравнения прямой на плоскости
- Уравнение прямой с угловым коэффициентом
- Общее уравнение прямой
- Уравнение прямой, проходящей через данную точку в данном направлении
- Уравнение прямой, проходящей через две точки
- Уравнение прямой в отрезках
- Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
- Полярное уравнение прямой
- Нормальное уравнение прямой
- Прямая линия на плоскости. Основные задачи
- Угол между двумя прямыми и условия параллельности и перпендикулярности двух прямых
- Расстояние от точки до прямой
- Линии второго порядка на плоскости
- Окружность
- Эллипс
- Каноническое уравнение эллипса
- Исследование формы эллипса по его уравнению
- Дополнительные сведения об эллипсе
- Каноническое уравнение гиперболы
- Исследование формы гиперболы по ее уравнению
- Асимптоты гиперболы
- Уравнение равносторонней гиперболы, асимптотами которой служат оси координат
- Дополнительные сведения о гиперболе
- Парабола
- Каноническое уравнение параболы
- Исследование форм параболы по ее уравнению
- Общее уравнение линий второго порядка
- Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям
- Общее уравнение второго порядка
- Общее уравнение прямой: описание, примеры, решение задач
- Общее уравнение прямой: основные сведения
- Неполное уравнение общей прямой
- Общее уравнение прямой, проходящей через заданную точку плоскости
- Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно
- Составление общего уравнения прямой
Видео:9 класс, 7 урок, Уравнение прямойСкачать

Прямоугольная система координат на плоскости и ее применение к простейшим задачам
Прямоугольные координаты точки на плоскости
Координатами точки на плоскости называются числа, определяющие положение этой точки на плоскости.
Прямоугольные декартовы координаты (по имени математика Декарта) на плоскости вводятся следующим образом: на этой плоскости выбираются точка О (начало координат) и проходящие через нее взаимно перпендикулярные направленные прямые Ох и Оу (оси координат) (рис. 1). Для удобства рассмотрения будем предполагать, что ось Ох 0ось абсцисс) горизонтальна и направлена слева направо, а ось Оу (ось ординат) вертикальна и направлена снизу вверх; таким образом, ось О у повернута относительно оси Ох на угол 90° против хода часовой стрелки 1 ). Кроме того, выбирается единица масштаба для измерения расстояний.
Для данной точки М введем в рассмотрение два числа: абсциссу х и ординату у этой точки.
Абсциссой х называется число, выражающее в некотором масштабе расстояние от точки до оси ординат, взятое со знаком плюс, если точка лежит вправо от оси ординат, и со знаком минус, если точка лежит влево от оси ординат. Ординатой у называется число, выражающее в некотором масштабе (обыкновенно в том же, как и для абсциссы) расстояние от точки до оси абсцисс, взятое со знаком плюс, если точка лежит выше оси абсцисс, и со знаком минус, если точка лежит ниже оси абсцисс.
Эти два числа х и у и принимаются за координаты точки М, так как они полностью определяют положение точки на плоскости, а именно: каждой паре чисел х и у соответствует единственная точка, координатами которой являются эти числа; и обратно, каждая точка плоскости имеет определенные координаты х и у. Если точка М имеет координаты х и у, то это обстоятельство обозначают так: М (х, у) (на первом месте ставится абсцисса х, а на втором — ордината у). При записи координат знак плюс, как обычно, можно опускать.
Оси Ох и Оу разбивают плоскость на четыре части, называемые квадрантами. Производя нумерацию квадрантов (I, II, III и IV) в направлении против хода часовой стрелки, отправляясь от того квадранта, где обе координаты положительны, получим следующую таблицу знаков координат:
Отрезок ОМ у соединяющий начало координат О с точкой М (рис. 2), называется ее радиусом-вектором. Обозначая через ф угол, образованный отрезком ОМ с положительным направлением оси Ох, и через 
Нетрудно убедиться, что формулы (1) будут справедливы для координат точек всех квадрантов. Таким образом, знак абсциссы х точки М совпадает со знаком косинуса, а знак ее ординаты у — со знаком синуса в соответствующем квадранте.
Легко видеть, что если точка лежит на оси абсцисс, то ее ордината у равна нулю; если же она лежит на оси ординат, ее абсцисса х равна нулю, и обратно. Следовательно, если точка совпадает с началом координат, то равны нулю обе ее координаты.
В дальнейшем прямоугольные декартовы координаты для краткости будем называть просто прямоугольными координатами.
В следующих параграфах рассмотрим некоторые простейшие задачи на применение прямоугольных координат на плоскости.
Преобразование прямоугольной системы координат
При решении задач иногда выгодно вместо данной прямоугольной системы координат 
Возникает вопрос о том, как от одной системы координат перейти к другой.
Рассмотрим сначала простейший случай (рис. 3), когда оси «новой системы координат» О’х’у’ параллельны соответствующим осям «старой системы координат о Оху и имеют одинаковые направления с ними (параллельный перенос системы координат).
Пусть начало новой системы координат — точка О’ — имеет координаты (а, Ь) в старой системе координат. Точка М плоскости со «старыми координатами» (х, у) будет иметь некоторые «новые координаты» [х у’] (для ясности мы их обозначаем квадратными скобками). Из рис. 3 непосредственно получаем
х’ = х — а, у’ = у — b, (1)
т. е. новые координаты точки равны ее старым координатам минус старые координаты нового начала.
Обратно, из (1) находим
х = х’ + а, у = у’ + Ь. (2)
Пусть теперь «новая система» координат Ох’у при неизменном начале О, повернута относительно «старой системы» Оху на угол а (рис. 4), т. е. 
Обозначим через 


Так как новые координаты точки М, очевидно, есть
то из формул (3) и (4) получаем
Для запоминания формул (6) используют следующий мнемонический прием: говорят, что первая формула (6) содержит полный беспорядок, а вторая — полный порядок. Действительно, в первой формуле на первом месте стоит cos, на втором — sin; кроме того, присутствует знак минус. Во второй формуле (6) никаких нарушений правильности в этом смысле нет.
Формулы (6) выражают старые координаты х и у точки М через ее новые х’ и у’. Чтобы выразить новые координаты х’ и у’ через старые х и у, достаточно разрешить систему (6) относительно х’и у’. Однако можно поступить проще, а именно принять систему Ох’у’ за «старую», а систему Оху за «новую». Тогда, учитывая, что вторая система повернута относительно первой на угол — а, заменяя в формулах (6) х’ и у’ соответственно на х и у и обратно и принимая во внимание, что cos (-a) = cos a, sin (-a) = -sin a, будем иметь
Наконец, в общем случае, когда новое начало координат есть точка О’ (a, Ь) и ось О’х’ образует с осью Ох угол а, соединяя формулы (2) и (6), находим
Здесь угол Р считается положительным, если радиус-вектор ОМ повернут относительно оси Ох’ против хода часовой стрелки, и отрицательным, если он повернут относительно этой оси по ходу часовой стрелки.
Аналогично, из формул (1) и (7) получаем
Из формул (8) и (9) вытекает, что формулы перехода от одной прямоугольной системы координат к другой прямоугольной системе координат являются линейными функциями как новых, так и старых координат, т. е. содержат эти координаты в первой степени.
Пример:
Отрезок ОМ, где точка М имеет координаты (х, г/), повернут на угол а = 120° против хода часовой стрелки (рис. 5). Каковы будут координаты х’ и у’ нового положения М’ точки М?
Решение:
Предполагая, что с точкой М связана подвижная система координат Ох’у на основании формул (6) будем иметь
Расстояние между двумя точками на плоскости
1) Найдем сначала расстояние г от начала координат О (0, 0) до точки М (х, у) (рис. 6).
Расстояние г = ОМ, очевидно, является гипотенузой прямоугольного 

Таким образом, расстояние от начала координат до некоторой точки равно корню квадратному из суммы квадратов координат этой точки.
2) В общем случае, пусть для точек A 

Выберем новую систему координат Ах’у’ начало которой совпадает с точкой А и оси которой параллельны прежним осям и имеют, соответственно, одинаковые направления с ними. Тогда в новой системе координат точки Л и В будут иметь координаты А [0, 0] и Б 
т. е. расстояние между двумя точками плоскости (при любом их расположении) равно корню квадратному из суммы квадратов разностей одноименных координат этих точек.
Замечание. Формула (2) дает также длину отрезка АВ. Легко определить направление этого отрезка. Из прямоугольного А ABC имеем
(dx и dy называются проекциями отрезка АВ на оси координат Оху). Отсюда получаем 
Пример:
Танк на местности переместился из точки А (-30, 80) в точку Б (50, 20) (относительно некоторой системы координат Оху)> причем координаты точек даны в километрах. Найти путь d, пройденный танком, если он двигался, не меняя направления.
Решение:
Применяя формулу (2), имеем
Деление отрезка в данном отношении
Предположим, что отрезок АВ (рис. 8), соединяющий точки A (xl9 уг) и В (x2t у2), разделен точкой С на два отрезка АС и СБ, причем отношение АС к СБ равно I (I > 0):
Требуется выразить координаты х и у точки С(х, у) через координаты концов отрезка АВ.
Опустим перпендикуляры 

откуда на основании равенства (1) будем иметь
Из рис. 8 видно, что 
Решая уравнение (3) относительно неизвестной абсциссы х, будем иметь


т. е. координаты середины отрезка равны полусуммам соответствующих координат его концов.
Примечание. При выводе формул (4) и (5) мы предполагали, что концы А и В отрезка АВ лежат в первом квадранте и, следовательно, координаты точек Аи В положительны. Легко доказать, что формулы (4) и (5) будут справедливы и в случае произвольного расположения отрезка АВ на координатной плоскости.
Пример:
Вычислить координаты точки С (х, у)> делящей отрезок АВ между точками А (-5, -3) и В (4, -6) в отношении АС/СВ = 3/2.
Решение:
В этом случае I = 3/2 и, следовательно,
Площадь треугольника
Пусть требуется найти площадь S треугольника ABC (рис. 9) с вершинами
Пусть АВ = с, АС = Ь, а углы, образованные этими сторонами с осью Ох, соответственно равны 
На основании (см. замечание) имеем (рис. 9)
и
Пусть 

Отсюда в силу (1) и (2) имеем
Заметим, что формула (4) при ином расположении вершин может дать площадь треугольника S со знаком минус. Поэтому формулу для площади треугольника обычно пишут в виде
где знак выбирается так, чтобы для площади получалось положительное число,
Используя понятие определителя второго порядка
формулу (4′) можно записать в удобной для запоминания форме:
Формула (4′) упрощается, если точка А 

Отметим, что если точки А, В, С находятся на одной прямой, то площадь S = 0; и обратно, если S = 0, то вершины А, Б и С расположены на одной прямой.
Пример:
Вспаханное поле имеет форму треугольника с вершинами А (-2, -1), В (3, 5) и С (-1, 4) (размеры даны в километрах). Определить площадь S этого поля.
По формуле (5) имеем
Замечание. Вычисление площади многоугольника сводится к вычислению площадей треугольников. Для этого достаточно разбить многоугольник на треугольники, площади которых вычисляют по формуле (4).
| Рекомендую подробно изучить предметы: |
|
| Ещё лекции с примерами решения и объяснением: |
- Линии второго порядка
- Полярные координаты
- Непрерывность функции
- Уравнения поверхности и линии в пространстве
- Интегрирование рациональных дробей
- Интегрирование тригонометрических функций
- Интегрирование тригонометрических выражений
- Интегрирование иррациональных функций
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:11 класс, 1 урок, Прямоугольная система координат в пространствеСкачать

Аналитическая геометрия на плоскости с примерами решения и образцами выполнения
Аналитическая геометрия — область математики, изучающая геометрические образы алгебраическими методами. Еще в XVII в. французским математиком Декартом был разработан метод координат, являющийся аппаратом аналитической геометрии.
В основе метода координат лежит понятие системы координат. Мы познакомимся с прямоугольной (или декартовой) и полярной системами координат.
Видео:Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать

Прямоугольная система координат
Две взаимно перпендикулярные оси Ох и Оу, имеющие общее начало О и одинаковую масштабную единицу (рис. 8), образуют прямоугольную систему координат на плоскости.
Ось Ох называется осью абсцисс, ось Оу — осью ординат, а обе оси вместе — осями координат. Точка О пересечения осей называется началом координат. Плоскость, в которой расположены оси Ох и Оу, называется координатной плоскостью и обозначается Оху.
Пусть М — произвольная точка плоскости. Опустим из нее перпендикуляры МА и MB на оси Ох и Оу.
Прямоугольными координатами х и у точки М будем называть соответственно величины OA и ОВ направленных отрезков 

Координаты хи у точки М называются соответственно ее абсцис-ой и ординатой. Тот факт, что точка М имеет координаты х и у, символически обозначают так: М (х; у). При этом первой в скобках указывают абсциссу, а второй — ординату. Начало координат имеет координаты (0; 0).
Таким образом, при выбранной системе координат каждой точке М плоскости соответствует единственная пара чисел (х;у) — ее прямоугольные координаты, и, обратно, на каждой паре чисел (х; у) соответствует, и притом одна, точка М плоскости Оху такая, что ее абсцисса равна х, а ордината у.
Итак, введение прямоугольной системы координат на плоскости позволяет установить взаимно однозначное соответствие между множеством всех точек плоскости и множеством пар чисел, что дает возможность при решении геометрических задач применять алгебраические методы.
Оси координат разбивают плоскость на четыре части, их называют четвертями, квадрантами или координатными углами и нумеруют римскими цифрами I, II, III, IV так, как показано на рис. 9. На рис. 9 указаны также знаки координат точек в зависимости от их расположения в той или иной четверти.
Видео:Видеоурок "Полярная система координат"Скачать

Простейшие задачи аналитической геометрии на плоскости
Расстояние между двумя точками.
Теорема:
Для любых двух точек 
Доказательство:
Опустим из точек 



Так как треугольник 
2. Площадь треугольника.
Теорема:
Для любых точек 
Доказательство:
Площадь треугольника ABC, изображенного на рис. 11, можно найти так:
где 
подставив выражения для этих площадей в равенство (3), получим формулу
из которой следует формула (2). Для любого другого расположения треугольника ABC формула (2) доказывается аналогично.
Пример:
Даны точки А (1; 1), В (6; 4), С (8; 2). Найти площадь треугольника ABC. По формуле (2):
3. Деление отрезка в данном отношении. Пусть на плоскости дан произвольный отрезок 

Число 
называется отношением, в котором точка М делит отрезок 
Задача о делении отрезка в данном отношении состоит в том, чтобы по данному отношению к и данным координатам точек 

Решить эту задачу позволяет следующая теорема.
Теорема:
Если точка М (х; у) делит отрезок 
где 


Доказательство:
Пусть прямая 




но 
Так как числа 







Следствие. Если 



Таким образом, каждая координата середины отрезка равна полусумме соответствующих координат.
Пример:
Даны точки 


Решение:
Искомая точка М делит отрезок 

Видео:Прямоугольная система координат. Координатная плоскость. 6 класс.Скачать

Полярные координаты
Наиболее важной после прямоугольной системы координат является полярная система координат. Она состоит из некоторой точки О, называемой полюсом, и исходящего из нее луча ОЕ — полярной оси. Кроме того, задается единица масштаба для измерения длин отрезков.
Пусть задана полярная система координат и пусть М — произвольная точка плоскости. Пусть р — расстояние точки М от точки О; ф — угол, на который нужно повернуть полярную ось для совмещения с лучом ОМ (рис. 13).
Полярными координатами точки М называются числа р и «р. При этом число р считается первой координатой и называется полярным радиусом, число ф — второй координатой и называется полярным углом.
Точка М с полярными координатами р и ф обозначается так: М (р; ф). Очевидно, полярный радиус может иметь любое неотрицательное значение: 

Установим связь между полярными координатами точки и ее прямоугольными координатами. При этом будем предполагать, что начало прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью. Пусть точка М имеет прямоугольные координаты х и у и полярные координаты р и ф (рис. 14). Очевидно,
Формулы (1) выражают прямоугольные координаты через полярные. Выражения полярных координат через прямоугольные следуют из формул (I):
Заметим, что формула tg ф = у/x определяет два значения полярного угла ф, так как ф изменяется от 0 до 2
Пример:
Даны прямоугольные координаты точки: (2; 2). Найти ее полярные координаты, считая, что полюс совмещен с началом прямоугольной системы координат, а полярная ось совпадает с положительной полуосью абсцисс.
Решение:
По формулам (2) имеем
Согласно второму из этих равенств 


Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Преобразование прямоугольных координат
При решении многих задач аналитической геометрии наряду с данной прямоугольной системой координат приходится вводить и другие прямоугольные системы координат. При этом, естественно, изменяются как координаты точек, так и уравнения кривых. Возникает задача: как, зная координаты точки в одной системе координат, найти координаты этой же точки в другой системе координат. Решить эту задачу позволяют формулы преобразования координат.
Рассмотрим два вида преобразований прямоугольных координат:
1) параллельный сдвиг осей, когда изменяется положение начала координат, а направления осей остаются прежними;
2) поворот осей координат, когда обе оси поворачиваются в одну сторону на один и тот же угол, а начало координат не изменяется.
1.Параллельный сдвиг осей. Пусть точка М плоскости имеет координаты (х; у) в прямоугольной системе координат Оху. Перенесем начало координат в точку О’ (а; b), где а и b — координаты нового начала в старой системе координат Оху. Новые оси координат О’х’ и О’у’ выберем сонаправленными со старыми осями Ох и Оу. Обозначим координаты точки М в системе О’х’у’ (новые координаты) через (х’; у’). Выведем формулы, выражающие связь между новыми и старыми координатами точки М. Для этого проведем перпендикуляры 


Это и есть искомые формулы.
2.Поворот осей координат. Повернем систему координат Оху вокруг начала координат О на угол а в положение Ох’у’ (рис. 16).
Пусть точка М имеет координаты (х; у) в старой системе координат Оху и координаты (х’; у’) в новой системе координат Ох’у’. Выведем формулы, устанавливающие связь между старыми и новыми координатами точки М. Для этого обозначим через (р; в) полярные координаты точки М, считая полярной осью положительную полуось Ох, а через (р; 0′) — полярные координаты той же точки М, считая полярной осью положительную полуось Ох’.
Очевидно, в каждом случае 
Выражая из этих равенств х’ и у’ через х и у, получим
Пример:
Определить координаты точки М (3; 5) в новой системе координат О’х’у’, начало О’ которой находится в точке ( — 2; 1), а оси параллельны осям старой системы координат Оху.
Решение:
По формуле (2) имеем
т. е. в новой системе координат точка М имеет координаты (5; 4).
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Уравнение линии на плоскости
Рассмотрим соотношение вида
связывающее переменные величины х и у. Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у.
Примеры уравнений:
Если равенство (1) справедливо для всех пар чисел х и у, то оно называется тождеством.
Примеры тождеств:
Важнейшим понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия L (рис. 17).
Определение. Уравнение (1) называется уравнением линии L (в заданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты никакой точки, не лежащей на этой линии.
Из определения следует, что линия L представляет собой множество всех тех точек плоскости, координаты которых удовлетворяют уравнению (1). Будем говорить, что уравнение (1) определяет (или задает) линию L.
Понятие уравнения линии дает возможность решать геометрические задачи алгебраическими методами. Например, задача нахождения точки пересечения двух линий, определяемых уравнениями х + у = 0 и 
Линия L может определяться уравнением вида
Где 
Рассмотрим примеры уравнений линий.
1) х—у=0. Записав это уравнение в виде у—х, заключаем, что множество точек, координаты которых удовлетворяют данному уравнению, представляет собой биссектрисы I и III координатных углов. Это и есть линия, определенная уравнением х-у=0 (рис. 18).
2) 

3) 
4) 


5) p = acosф, где a — положительное число, переменные р и ф— полярные координаты. Обозначим через М точку с полярными координатами (р; ф), через А — точку с полярными координатами (а; 0) (рис. 20). Если p = acosф, где 
6) p=aф, где а — положительное число; р и ф — полярные координаты. Обозначим через М точку с полярными координатами (р; ф). Если ф=0, то и р = 0. Если ф возрастает, начиная от нуля, то р возрастает пропорционально ф. Точка М (р; ф), таким образом, исходя из полюсу, движется вокруг него с ростом ф, одновременно удаляясь от него. Множество точек, полярные координаты которых удовлетворяют уравнению р = аф,- называется спиралью Архимеда (рис. 21). При этом предполагается, что ф может принимать любые неотрицательные значения.
Если точка М совершает один полный оборот вокруг полюса, то ф возрастает на 


В приведенных примерах по заданному уравнению линии исследованы ее свойства и тем самым установлено, что представляет собой эта линия.
Рассмотрим теперь обратную задачу: для заданного какими-то свойствами множества точек, т. е. для заданной линии L, найти ее уравнение.
Пример:
Вывести уравнение (в заданной прямоугольной системе координат) множества точек, каждая из которых отстоит от точки 

Решение:
Расстояние от произвольной точки М (х; у) до точки С вычисляется по формуле
Если точка М лежит на окружности, то 

Если же точка М (х; у) не лежит на данной окружности, то 
Таким образом, искомое уравнение окружности имеет вид (2). Полагая в (2) 
Видео:9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6Скачать

Линии первого порядка
Уравнение прямой с угловым коэффициентом. Пусть дана которая прямая. Назовем углом наклона данной прямой к оси Ох угол а на который нужно повернуть ось Ох, чтобы ее положительное направление совпало с одним из направлений прямой. Угол а может иметь различные значения, которые отличаются друг от друга на величину 
Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом этой прямой и обозначается буквой k:
Из формулы (1), в частности, следует, что если а=0, т. е. прямая параллельна оси Ох, то k = 0. Если 
Выведем уравнение данной прямой, если известны ее угловой коэффициент k и величина b отрезка ОВ, который она отсекает на оси Оу (рис. 23) (т. е. данная прямая не перпендикулярна оси Ох).
Обозначим через М произвольную точку плоскости с координатами х и у. Если провести прямые BN и NM, параллельные осям, то в случае к
но 
Уравнение (2) после преобразования принимает вид
Уравнение (3) называют уравнением прямой с угловым коэффициентом. Если к = 0, то прямая параллельна оси Ох, и ее уравнение имеет вид у= Ь.
Итак, любая прямая, не перпендикулярная оси Ох, имеет уравнение вида (3). Очевидно, верно и обратное: любое уравнение вида (3) определяет прямую, которая имеет угловой коэффициент k и отсекает на оси Оу отрезок величины b.
Пример:
Построить прямую, заданную уравнением
Решение:
Отложим на оси Оу отрезок ОВ, величина которого равна 2 (рис. 24); проведем через точку В параллельно оси Ох отрезок, величина которого BN = 4, и через точку N параллельно оси Оу отрезок, величина которого NM = 3. Затем проведем прямую ВМ, которая и является искомой. Она имеет угловой коэффициент k=3/4 и отсекает на оси Оу отрезок величины b=2.
равнение прямой, проходящей через данную точку, с данным угловым коэффициентом. В ряде случаев возникает необходимость составить уравнение прямой, зная одну ее точку 


Замечание:
Если прямая проходит через точку 

Уравнение прямой, проходящей через две данные точки
Пусть даны две точки 




Определяя k из этого равенства (при условии 
Это уравнение, если 
Если 



Пример:
Составить уравнение прямой, проходящей через точки A
Решение:
Подставляя координаты точек 
Угол между двумя прямыми
Рассмотрим две прямые 





Из геометрических соображений устанавливаем зависимость между углами 
Формула (6) определяет один из углов между прямыми. Второй угол равен
Пример:
Две прямые заданы уравнениями 
Решение:
Очевидно, 
Таким образом, один из углов между данными прямыми равен 
Условия параллельности и перпендикулярности двух прямых
Если прямые 


Таким образом, условием параллельности двух прямых является равенство их угловых коэффициентов.
Если прямые 
Таким образом, условие перпендикулярности двух прямых состоит в том, что их угловые коэффициенты обратны по величине и противоположны по знаку. Это условие можно формально получить из формулы (6), если приравнять нулю знаменатель в правой части (6), что соответствует обращению 
Общее уравнение прямой
Теорема:
В прямоугольной системе координат любая прямая задается уравнением первой степени
и обратно, уравнение (7) при произвольных коэффициентах А, В, С (А и В не равны нулю одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.
Доказательство:
Сначала докажем первое утверждение. Если прямая не перпендикулярна оси Ох, то, как было показано в п. 1, она имеет уравнение y=kx + b, т. е. уравнение вида (7), где A=k, В=-1 и С=b. Если прямая перпендикулярна оси Ох, то все ее точки имеют одинаковые абсциссы, равные величине а отрезка, отсекаемого прямой на оси Ох (рис. 27). Уравнение этой прямой имеет вид х=а, т. е. также является уравнением первой степени вида (7), где А = 1, В = 0, С=—а. Тем самым первое утверждение доказано. Докажем обратное утверждение. Пусть дано уравнение (7), причем хотя бы один из коэффициентов A и В не равен нулю.
Если 
Полагая 
Если В=0, то 

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка. Таим образом каждая прямая есть линия первого порядка и, обратно, каждая линия первого порядка есть прямая.
Уравнение вида Ах + By + С=0 называется общим уравнением прямой. Оно содержит уравнение любой прямой при соответствующим выборе коэффициентов А, В, С.
Неполное уравнение первой степени. Уравнение прямой «в отрезках»
Рассмотрим три частных случая, когда уравнение Ах + By + С = 0 является неполным, т. е. какой-то из коэффциентов равен нулю.
1) С = 0; уравнение имеет вид Ах+Ву = 0 и определяет прямую, проходящую через начало координат.
2) 

3) 


Пусть теперь дано уравнение Ах+By+C=0 при условии, что ни один из коэффициентов А, В, С не равен нулю. Преобразуем его к виду
Вводя обозначения 
Уравнение (8) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения прямой удобна для геометрического построения прямой.
Пример:
Прямая задана уравнением 
Решение:
Для данной прямой уравнение «в отрезках» имеет
вид
Чтобы построить эту прямую, отложим на осях координат Ох и Оу отрезки, величины которых соответственно равны а=-5, b=3, и проведем прямую через точки 
Нормальное уравнение прямой. Расстояние от точки до прямой
Пусть дана некоторая прямая L. Проведем через начало координат прямую п, перпендикулярную данной, и назовем ее нормалью к прямой L. Буквой N отметим точку, в которой нормаль пересекает прямую L (рис. 30, а). На нормали введем направление от точки О к точке N. Таким образом, нормаль станет осью. Если точки N и О совпадают, то в качестве направления нормали возьмем любое из двух возможных.
Обозначим через 
Тем самым, 

Это равенство можно переписать в виде
Так как точки, не лежащие на данной прямой L, не удовлетворению (9), то (9) —уравнение прямой L в полярных координатах. По формулам, связывающим прямоугольные координаты с полярными, имеем: 
Если точки О и N совпадают, то прямая L проходит через начало координат (рис. 30, б) и р = 0. В этом случае, очевидно, для любой точки М прямой L выполняется равенство 

Таким образом, и в этом случае уравнение прямой можно представить в виде (10).
Уравнение (10) называется нормальным уравнением прямой L.
С помощью нормального уравнения прямой можно определить расстояние от данной точки плоскости до прямой.
Пусть L — прямая, заданная нормальным уравнением: 


Через точку 





Если же точки 




Таким образом, в каждом из рассмотренных случаев получаем формулу
Отметим, что формула (11) пригодна и в том случае, когда точка 



Теперь покажем, как привести общее уравнение прямой к нормальному виду. Пусть
— общее уравнение некоторой прямой, а
— ее нормальное уравнение.
Так как уравнения (12) и (13) определяют одну и ту же прямую, то их коэффициенты пропорциональны. Умножая все члены уравнения (12) на произвольный множитель 
При соответствущем выборе р полученное уравнение обращается в уравнение (13), т. е. выполняются равенства
Чтобы найти множитель р., возведем первые два из этих равенств в квадрат и сложим, тогда получаем
Число р называется нормирующим множителем. Знак нормирующего множителя определяется с помощью третьего из равенств (14). Согласно этому равенству 

Итак, для приведения общего уравнения прямой к нормальному виДу надо найти значение нормирующего множителя р, а затем все члены уравнения умножить на р.
Пример. Даны прямая 3х-4у+10=0 и точка М (4; 3). Найти расстояние d от точки М до данной прямой.
Решение. Приведем данное уравнение к нормальному виду. Для этого найдем по формуле (15) нормирующий множитель:
Умножая данное уравнение на р, получаем нормальное уравнение
По формуле (11) находим искомое расстояние:
Видео:Видеоурок "Преобразование координат"Скачать

Линии второго порядка
Рассмотрим три вида линий: эллипс, гиперболу и параболу, уравнения которых в прямоугольной системе координат являются уравнениями второй степени. Такие линии называются линиями второго порядка.
Эллипс
Определение:
Эллипсом называется множество всех точек плоскости, для которых сумма расстояний от двух данных точек, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.
Обозначим фокусы эллипса через 


Для вывода уравнения эллипса введем на плоскости прямоугольную систему координат так, чтобы фокусы эллипса лежали на оси абсцисс, а начало координат делило отрезок 

Пусть М (х; у) — произвольная точка плоскости. Обозначим через 



По формуле (1) из § 2 находим
Подставляя эти выражения в равенство (1), получаем
Уравнение (3) и есть искомое уравнение эллипса. Однако для практического использования оно неудобно, поэтому уравнение эллипса обычно приводят к более простому виду. Перенесем второй радикал в правую часть уравнения, а затем возведем обе части в квадрат:
С нова возведем обе части уравнения в квадрат
Введем в рассмотрение новую величину
геометрический смысл которой раскрыт далее. Так как по условию а>с, то 
Поэтому уравнение (5) можно переписать в виде
Разделив обе части на 
Так как уравнение (7) получено из уравнения (3), то координаты любой точки эллипса, удовлетворяющие уравнению (3), будут удовлетворять и уравнению (7). Однако при упрощении уравнения (3) обе его части дважды были возведены в квадрат и могли появиться «лишние» корни, вследствие чего уравнение (7) могло оказаться неравносильным уравнению (3). Убедимся в том, что если координаты точки удовлетворяют уравнению (7), то они удовлетворяют и уравнению (3), т. е. уравнения (3) и (7) равносильны. Для этого, очевидно, достаточно показать, что величины г, и г2 для любой точки, координаты которой удовлетворяют уравнению (7), удовлетворяют соотношению (1). Действительно, пусть координаты х и у некоторой точки удовлетворяют уравнению (7). Тогда, подставляя в выражение (2) значение 



Аналогично найдем, что 
Исследуем теперь форму эллипса по его каноническому уравнению (7). Заметим, что уравнение (7) содержит только члены с четными степенями координат х и у, поэтому эллипс симметричен относительно осей Ох и Оу а также относительно начала координат. Таким образом, можно знать форму всего эллипса, если установить вид той его части, которая лежит в I координатном угле. Для этой части 
Из равенства (8) вытекают следующие утверждения.
1)Если x=0, то у=b. Следовательно, точка (0; b) лежит на эллипсе. Обозначим ее через В.
2)При возрастании х от 0 до а у уменьшается.
3)Если х=а, то у=0. Следовательно, точка (а; 0) лежит на эллипсе. Обозначим ее через А.
4)При х>а получаем мнимые значения у. Следовательно, точек эллипса, у которых х>а, не существует.
Итак, частью эллипса, расположенной в I координатном угле, является дуга ВА (рис. 33).
Произведя симметрию относительно координатных осей, получим весь эллипс.
Замечание. Если а=b, то уравнение (7) принимает вид 


Оси симметрии эллипса называются его осями, а центр симметрии (точка пересечения осей) — центром эллипса. Точки, в которых эллипс пересекает оси, называются его вершинами. Вершины ограничивают на осях отрезки, равные 2а и 2b. Из равенства (6) следует, что 
Введем еще одну величину, характеризующую форму эллипса.
Определение:
Эксцентриситетом эллипса называется отношение 
Эксцентриситет обычно обозначают буквой 
Определение:
Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.
Обозначим фокусы гиперболы через 



Уравнение (13) принимает вид
Как и для эллипса, можно доказать равносильность уравнений (15) и (11). Уравнение (15) называется каноническим уравнением гиперболы.
Исследуем форму гиперболы по ее каноническому уравнению. Так как уравнение (15) содержит члены только с четными степенями координат х и у, то гипербола симметрична относительно осей Ох и Оу, а также относительно начала координат. Поэтому достаточно рассмотреть только часть гиперболы, лежащую в 1 координатном угле. Для этой части у
Из равенства (16) вытекают следующие утверждения.
1)Если 

2)Если х=а, то у= 0, т. е. точка (а; 0) принадлежит гиперболе. Обозначим ее через А.
3)Если х>а, то у>0, причем у возрастает при возрастании х и 

Для этого кроме уравнения (16) рассмотрим уравнение
которое определяет прямую с угловым коэффициентом k=b/a, проходящую через начало координат. Часть этой прямой, расположенная в I координатном угле, изображена на рис. 35. Для ее построения можно использовать прямоугольный треугольник OAВ с катетами ОА = а и АВ = b.
Покажем, что точка М, уходя по гиперболе в бесконечность, неограниченно приближается к прямой (17), которая является асимптотой гиперболы.
Возьмем произвольное значение х(х
Точка М лежит на гиперболе, точка N — на прямой (17). Поскольку обе точки имеют одну и ту же абсциссу х, прямая MN перпендикулярна оси Ох (рис. 36). Найдем длину отрезка MN. Прежде всего заметим, что при х
Это означает, что при одной и той же абсциссе точка гиперболы лежит под соответствующей точкой асимптоты. Таким образом,
Из полученного выражения следует, что 


Обозначим через Р основание перпендикуляра, опущенного из точки М на прямую (17). Тогда 




Вид всей гиперболы теперь можно легко установить, используя симметрию относительно координатных осей (рис. 37). Гипербола состоит из двух ветвей (правой и левой) и имеет две асимптоты: 
Оси симметрии называются осями гиперболы, а центр симметрии (точка пересечения осей) — центром гиперболы. Одна из осей пересекается с гиперболой в двух точках, которые называются ее вершинами (они на рис. 37 обозначены буквами А’ и А). Эта ось называется действительной осью гиперболы. Другая ось не имеет общих точек с гиперболой и называется мнимой осью гиперболы. Прямоугольник ВВ’С’С со сторонами 2а и 2b (рис. 37) называется основным прямоугольником гиперболы. Величины а и Ь называются соответственно действительной и мнимой полуосями гиперболы.
также определяет гиперболу. Она изображена на рис. 37 пунктирными линиями; вершины ее лежат на оси Оу. Эта гипербола называется сопряженной по отношению к гиперболе (15). Обе эти гиперболы имеют одни и те же асимптоты.
Гипербола с равными полуосями (а = b) называется равносто-нней и ее каноническое уравнение имеет вид
Так как основной прямоугольник равносторонней гиперболы является квадратом, то асимптоты равносторонней гиперболы перпендикулярны друг другу.
Определение. Эксцентриситетом гиперболы называется отношение 
Эксцентриситет гиперболы (как и эллипса) обозначим буквой е. Так как с>а, то е>1, т. е. эксцентриситет гиперболы больше единицы. Заметив, что 
Из последнго равенства легко получается геометрическое истолкование эксцентриситета гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше отношение b/а, а это означает, что основной прямоугольник более вытянут в направлении действительной оси. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а значит, и форму самой гиперболы.
В случае равносторонней гиперболы
Директрисы эллипса и гиперболы
Определение:
Две прямые, перпендикулярные большой оси эллипса и расположенные симметрично относительно центра на расстоянии а/е от него, называются директрисами эллипса (здесь а — большая полуось, е — эксцентриситет эллипса).
Уравнения директрис эллипса, заданного каноническим уравнением (7), имеют вид
Так как для эллипса е а. Отсюда следует, что правая директриса расположена правее правой вершины эллипса, а левая — левее его левой вершины (рис. 38).
Определение:
Две прямые, перпендикулярные действительной Си гиперболы и расположенные симметрично относительно центра на расстоянии а/е от него, называются директрисами гиперболами (здесь а—действительная полуось, е—эксцентриситет гиперболы).
Уравнения директрис гиперболы, заданной каноническим уравнением (15), имеют вид
Так как для гиперболы е>1, то а/е 1. Соответственно, возникает вопрос, что представляет собой множество точек, определенное аналогичным образом при условии е = 1. Оказывается это новая линия второго порядка, называемая параболой.
Парабола
Определение:
Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.
Для вывода уравнения параболы введем на плоскости прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус перпендикулярно директрисе, и будем считать ее положительным направлением направление от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой. Выведем уравнение параболы в выбранной системе координат.
Пусть М (х; у) — произвольная точка плоскости. Обозначим через r расстояние от точки М до фокуса 
Фокус F имеет координаты (р/2; 0); поэтому по формуле (1) из § 2 находим
Расстояние d, очевидно, выражается равенством (рис. 40)
Отметим, что эта формула верна только для х
Это и есть искомое уравнение параболы. Приведем его к более удобному виду, для чего возведем обе части равенства (27) в квадрат. Получаем
Проверим, что уравнение (28), полученное после возведения в квадрат обеих частей уравнения (27), не приобрело «лишних» корней. Для этого достаточно показать, что для любой точки М (х; у), координаты которой удовлетворяют уравнению (28). выполнено соотношение (24). Действительно, из уравнения (28) вытекает, что х


Уравнение (28) называется каноническим уравнением параболы. о уравнение второй степени. Таким образом, парабола есть ли-я второго порядка.
Исследуем теперь форму параболы по ее уравнению (28). Так к уравнение (28) содержит у только в четной степени, то пара-ла симметрична относительно оси Ох. Следовательно, достаточно смотреть только ее часть, лежащую в верхней полуплоскости. Для этой части у
Из равенства (29) вытекают следующие утверждения.
1)Если х Общее уравнение линии второго порядка
Важной задачей аналитической геометрии является исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам.
Общее уравнение линии второго порядка имеет следующий вид:
где коэффициенты А, 2В, С, 2D, 2Е и F — любые числа и, кроме того, числа А, В и С не равны нулю одновременно, т. е.
1.Приведение общего уравнения линии второго порядка к простейшему виду.
Лемма:
Пусть в прямоугольной системе координат Оху задано уравнение (1) и пусть 
где А’, С’, F’— некоторые числа; (х»; у») — координаты точки в новой системе координат.
Доказательство:
Пусть прямоугольная система координат О’х’у’ получена параллельным сдвигом осей Ох и Оу, причем начало координат перенесено в точку 
(см. формулы (1), § 4). В новых координатах уравнение (1) принимает вид
В уравнении (3) коэффициенты D’ и Е’ обращаются в нуль, если подобрать координаты точки 
Так как 
Если пара чисел 
Пусть теперь прямоугольная система координат О’х»у» получена поворотом системы О’х’у’ на угол а. Тогда координаты х’, у’ будут связаны с координатами х», у» формулами
(см. формулы (3), § 4). В системе координат О’х»у» уравнение (5) принимает вид
Выберем угол а так, чтобы коэффициент В’ в уравнении (6) обратился в нуль. Это требование приводит к уравнению 2В cos 2а=(А — С) sin 2а относительно а. Если А = С, то cos2a=0, и можно положить 


т. е. получили уравнение (2).
Замечание. Уравнения (4) называются уравнениями центра линии второго порядка, а точка 


2.Инвариантность выражения 

Раскрыв скобки и приведя подобные члены, получим
что и требовалось показать.
Величина 
В зависимости от знака величины 
1)эллиптический, если 
2)гиперболический, если 
Возможны следующие случаи:
а) А>0, С>0 (случай А 0, С>0 умножением уравнения на —1) и F 0, С>0 и F>0. Тогда, аналогично предыдущему, уравнение можно привести к виду
Этому уравнению не удовлетворяют координаты никакой точки плоскости. Оно называется уравнением мнимого эллипса.
в)А>О, С>О, F = 0. Уравнение имеет вид
Ему удовлетворяют координаты только одной точки х = 0, у = 0. Такое уравнение назовем уравнением пары мнимых пересекающихся прямых.
2)Гиперболический тип. Поскольку 
Декартовы системы координат. Простейшие задачи
1°. Введение координат позволяет решать многие задачи алгебраическими методами и, обратно, алгебраическим объектам (выражениям, уравнениям, неравенствам) придавать геометрическую интерпретацию, наглядность. Наиболее привычна для нас прямоугольная система координат Оху: две взаимно перпендикулярные оси координат — ось абсцисс Ох и ось ординат Оу — с единой единицей масштаба.
2°. Расстояние между данными точками 
3°. Будем говорить, что точка 




При 

Примеры с решениями
Пример:
Отрезок АВ делится точкой С(-3,0) в отношении 
Решение:
1) Для нахождения искомой длины по формуле п. 2° необходимо знать координаты точки 
откуда 
3)
Ответ.
Полярные координаты
1°. Если прямоугольная система координат задается двумя взаимно перпендикулярными осями координат Ох и Оу , то полярная система задается одним лучом (например, Ох), который обозначается Or и называется полярной осью, а точка О — началом полярной оси, или полюсом. В полярной системе координат положение точки М на плоскости определяется двумя числами: углом у (в градусах или радианах), который образует луч ОМ с полярной осью, и расстоянием r = ОМ точки М от начала полярной оси. Записываем 

Если поворот от оси Or к ОМ совершается против часовой стрелки, то 
Переменный луч ОМ описывает всю плоскость, если 
Иногда есть смысл считать, что 
2°. Можно совместить ось Or с лучом Ох прямоугольной системы Оху, для того чтобы получить связь полярных координат точки М с прямоугольными (рис. 2.3,6). Имеем очевидные формулы:
Формулы (1) выражают прямоугольные координаты через полярные.
Полярные координаты выражаются через прямоугольные по формулам
Формула 

3°. Если в системе Оху привычно иметь дело с функцией у = у(х) (хотя можно и х = х(у)), то в полярной системе 
4°. Построение кривой 

Примеры с решениями
Пример:
Построить кривую 
Решения:
Ясно, что 








Таким образом, график линейной функции представляет собой спираль с началом в точке О. Эта спираль — след точки 
Пример:
Построить кривую
Решение:
Проведем анализ данной функции.
1) Эта функция нечетна, поэтому можно ограничиться значениями 
то


3) Функция 

плоскости обозначен на рис. 2.5 знаком «+». Если же 



4) Далее рассмотрим промежуток 





5) На девяти различных лучах в промежутке 
построить точки на обозначенных в таблице расстояниях. Правда, на первом и последнем лучах соответствующие точки кривой совпадают с началом координат. Конечно, мы делаем это весьма приблизительно, но именно тут точность глазомера даст наиболее эффективный чертеж. Хорошо при этом иметь под рукой транспортир и циркуль.
6) Мы получили «лепесток» (рис. 2.6) — это треть графика. Другие два лепестка расположены внутри углов со знаками «+». Периодичность сводится к повороту нашего рисунка на угол 
7) Полученная трехлепестковая фигура — результат периодичности. В этом состоит отличие от периодичности функции 


Пример:
Построить кривую 
Решение:
1) Для того, чтобы построить график рассматриваемой функции, ограничимся плоскостью Оху, на которой 
2) Если 



3) Остается взять табличные значения для — и построить соответствующую таблицу:
4) Соединяя соответствующие точки, получаем линию (рис. 2.8).
5) Если бы мы изменяли 

6) Для того чтобы получить полную замкнутую линию — график функции 
Нам надо иметь для 


в) От 

г) Этот промежуток делим на две половины 


Остается изобразить эту линию на чертеже — это OABCDEO (рис. 2.9). Угловые координаты этих точек таковы:

Реализована эта линия при полутора полных оборотах текущего радиуса около начала координат, или как бы на двух л истах-плоскостях.
Линии первого порядка
1°. Прямая линия на плоскости отождествляется с множеством всех точек, координаты которых удовлетворяют некоторому линейному уравнению. Различают следующие виды уравнения прямой:
1) Ах + By + С = 0, где А и В не равны одновременно нулю, — общее уравнение прямой;
2) у = kx + b — уравнение прямой с угловым коэффициентом k , при этом 

3) 
4) 

Примечание:
Заметим, что одна прямая (один геометрический объект) может быть задана формально разными уравнениями. Это означает, что соответствующие уравнения для одной прямой должны быть равносильными, а тогда каждое из них можно привести (преобразовать) к любому другому (кроме некоторых исключительных случаев). В связи с этим отметим соотношения между параметрами различных уравнений:
2°. Уравнения конкретных прямых l.
1) 




2) 

3) 




3°. Угол в между прямыми 
определяется через тангенс: 



Отсюда, в частности, следуют признаки параллельности и перпендикулярности прямых:
4°. Точка пересечения двух прямых 
5°. Расстояние от данной точки 

В частности, 
6°. Пересекающиеся прямые 
Эти биссектрисы взаимно перпендикулярны (предлагаем доказать это).
7°. Множество всех прямых, проходящих через точку 




8°. Неравенство 

Примеры с решениями
Пример:
По данному уравнению прямой
- общее уравнение;
- уравнение с угловым коэффициентом;
- уравнение в отрезках;
- нормальное уравнение.
Решение:
1) Приведя к общему знаменателю, получим общее уравнение прямой (п. 1°) Зх — 4у — 4 = 0.
2) Отсюда легко получить уравнение прямой с угловым коэффициентом
3) Уравнение в отрезках получим из общего уравнения Зх — 4у = 4 почленным делением на свободный член:
4) Для получения нормального уравнения найдем

и 

Пример:
Составить уравнение прямой, проходящей через точку пересечения прямых х + у — 2 = 0 и Зх + 2у — 5 = 0 перпендикулярно к прямой Зх + 4у — 12 = 0.
Решение:
1) Координаты точки 
2) Угловые коэффициенты перпендикулярных прямых связаны (п. 3°) так: 

3) Искомое уравнение прямой, проходящей через точку 


Пример:
Дан треугольник с вершинами А(1,-1), B(—2,1), С(3, —5). Написать уравнение перпендикуляр
Решение:
1) Сделаем схематический чертеж (рис. 2.15). 2) Медиана ВМ точкой М делит отрезок АС пополам, значит (п. 3°),
3) Уравнение ВМ запишем (п. 2°) в виде
4) Из условия 

5) Искомое уравнение имеет вид: 
Пример:
Дан треугольник с вершинами А(7,0), В(3,4), С(2, —3). Найти уравнения стороны АВ, высоты CD, биссектрисы BE, их длины и угол А. Определить вид треугольника по углам. Описать треугольник системой неравенств. Сделать чертеж.
Решение:
Чертеж построен (рис. 2.16).
5) Для составления уравнения биссектрисы BE (п. 6°) нужно знать уравнения ВС и АВ. Найдем уравнение (ВС):
6) Для нахождения высоты CD используем формулу п. 5°:
7) Длину биссектрисы BE найдем так. Точка Е есть точка пересечения двух прямых BE и АС. Найдем уравнение АС:
Координаты точки Е найдем как решение системы
Итак,
8) Угол A находим по формуле 



9) Пусть a, b, c — стороны треугольника, с — большая из них. Если 




10) Уравнение (АВ): х + у — 7 = 0. Треугольник AВС находится по отношению к этой прямой в полуплоскости, содержащей точку С(2,-3). В этой точке левая часть уравнения равна 2-3-7 = -8 0 (ибо в точке А(7,0) имеем неравенство 7 • 7 — 0 — 17 > 0).
Под треугольником подразумевается множество точек, лежащих внутри треугольника и на его сторонах, поэтому мы записываем нестрогие неравенства:
Пример:
Полярное уравнение 
Решение:
Перепишем сначала данное уравнение в виде 

Линии второго порядка
К кривым второго порядка относятся следующие четыре линии: окружность, эллипс, гипербола, парабола. Координаты х, у точек каждой из этих линий удовлетворяют соответствующему уравнению второй степени относительно переменных х и у.
Ниже под геометрическим местом точек (сокращенно ГМТ) подразумевается некоторое множество точек плоскости, координаты которых удовлетворяют определенному условию. Определения кривых второго порядка дадим через ГМТ, указывая свойства этих точек.
Окружность
Окружностью радиуса R с центром в точке 

Каноническое уравнение окружности имеет вид
Примеры с решениями
Пример:
Составить уравнение окружности, диаметром которой является отрезок, отсекаемый координатными осями от прямой Зх -2у + 12 = 0.
Решение:
На рис. 2.17 изображена прямая Зх — 2у + 12 = 0. Она пересекает координатные оси в точках A(-4,0), В(0,6).


1) Центром окружности является точка 
:

2) Радиус R окружности, равный 
3) Каноническое уравнение искомой окружности имеет вид
Примечание. Если в последнем уравнении выполнить обозначенные действия, то получаем уравнение 
Эллипс
Эллипсом называется ГМТ, для которых сумма расстояний до двух фиксированных точек, называемых фокусами, есть величина постоянная. (Данная величина больше расстояния между фокусами.)
Если предположить, что фокусы эллипса расположены в точках 
При этом а > 0 — большая полуось, b > 0 — малая полуось, с — фокусное расстояние и 
Сам эллипс изображен на рис. 2.18. Важными характеристиками эллипса являются:
— эксцентриситет 


— директрисы эллипса — прямые с уравнениями 
— расстояния точки М(х,у) эллипса до его фокусов ( 

Примеры с решениями
Пример:
Составить уравнение эллипса, симметричного относительно координатных осей и проходящего через точки 

Решение:
1) Параметры а и b эллипса 
После умножения первого уравнения на 16, а второго на -9 и сложения полученных результатов имеем
Отсюда с учетом b > 0 находим b = 4, а тогда а = 5.
Каноническое уравнение эллипса найдено:
2) Фокусное расстояние
3) Эксцентриситет равен
4) Расстояние от А до фокусов:
5) Уравнения директрис: 

Чертеж построен (рис. 2.19).
Пример:
Составить уравнение эллипса, симметричного относительно координатных осей, проходящего через точку А(—3, 1,75) и имеющего эксцентриситет
Решение:
Имеем систему уравнений относительно параметров а, b, с =
(эллипс проходит через точку А),
или 
Из второго уравнения находим:
Подставляя это в первое уравнение, получим 

Уравнение эллипса
Пример:
Составить уравнение эллипса с центром в начале координат и фокусами на оси Ох, если его эксцентриситет равен 


Решение:
1) Сделаем чертеж (рис. 2.20).
2) Каноническое уравнение искомого эллипса есть 
задача сводится к нахождению параметров а и b.
3) Вспомним, что
Как видно, достаточно найти с. Составим уравнение прямой
С другой стороны, по определению, угловой коэффициент прямой есть тангенс угла наклона прямой к оси Ox, 
По найденному значению с определим
Пример:
Записать в прямоугольных координатах полярное
Решение:
Сначала перепишем данное уравнение в виде 



Получили каноническое уравнение эллипса с центром в точке
Гипербола
1°. Гиперболой называется ГМТ, для которых модуль разности расстояний до двух фиксированных точек, называемых фокусами, есть величина постоянная. (Данная величина меньше расстояния между фокусами.)
2°. Если фокусы гиперболы расположены в точках 
где
При этом а — действительная полуось, b — мнимая полуось 

3°. Прямые с уравнениями , 



Расстояния от точки М(х, у) гиперболы до ее фокусов ( 

Прямые с уравнениями 
Примеры с решениями
Пример:
На гиперболе с уравнением 
точку М, такую, что 
Решение:
1) Имеем а = 4, b = 3, 




Ветви гиперболы проходят через точки (4,0), (-4,0), приближаясь к асимптотам, создавая впечатление почти параллельных линий. Фокусы 
2) Имеем 

Находим
Поскольку М<х, у) лежит на гиперболе 


a если 
(это число не существует в нужном нам смысле)
Получили две точки, удовлетворяющие данным условиям,
3) Уравнения директрис данной гиперболы:
Пример:
На гиперболе 
Решение:
1) Сделаем символический чертеж гиперболы (рис. 2.22) и ее асимптот. На нем изображены две различные возможные ситуации, удовлетворяющие условиям задачи: расстояние от точки М до асимптоты 


2) Уравнения асимптот:

3) Для точки 

4) Так как 
системы
Из первой находим 
Вторая система решений не имеет.
5) Что касается координат точки М, то предлагаем убедиться самостоятельно в том, что
Пример:
Определить координаты точки пересечения двух взаимно перпендикулярных прямых, проходящих через фокусы гиперболы 
Решение:
1) Сделаем чертеж (рис. 2.24) и выпишем параметры гиперболы. Имеем а = 4, b = 3, с = 5, 
2) Составим уравнение 
3) Составим уравнение прямой 




4) Координаты точки М получаются как решение системы
Парабола
Параболой называется ГМТ, для которых расстояние до фиксированной точки, называемой фокусом, равно расстоянию до фиксированной прямой, называемой директрисой. Если фокус параболы расположен в точке 



Примеры с решениями
Пример:
Составить уравнение параболы, симметричной относительно оси Оу, если она проходит через точки пересечения прямой х — у = 0 и окружности
Решение:
Уравнение искомой параболы должно иметь вид 

Получили 


Пример:
Составить уравнение параболы, симметричной относительно оси Ох, с вершиной в начале координат, если известно, что парабола проходит через точку А(2,2).
Найти длину хорды, проходящей через точку М(8,0) и наклоненной к оси Ох под углом 60°.
Решение:
1) Сделаем чертеж (рис. 2.27).
2) Каноническое уравнение такой параболы имеет вид 
Итак, уравнение параболы
3) Найдем координаты точек 





решив которые, найдем 
Ответ.
Пример:
Уравнение параболы 
Решение:
Подставляем в данное уравнение
При 

Приведение общего уравнения кривой второго порядка к каноническому виду
1°. Даны две прямоугольные системы координат 





Тогда координаты (х,у) и 
Формулы (3) называются формулами преобразования координат при параллельном переносе осей координат.
2°. Предположим, что прямоугольные системы координат 




координаты (х, у) и 
Формулы (4) называются формулами преобразования координат при повороте осей координат.
3°. Общее уравнение второго порядка относительно переменных х и у имеет вид
Существует угол 



Соответствующий угол 
4°. Уравнение (6) приводится к каноническому виду при помощи формул параллельного переноса.
Заметим, что окончательное уравнение может и не иметь геометрического изображения, что подтверждает, например, уравнение х2 + у2 + 1 = 0.
Примеры с решениями
Пример:
Привести к каноническому виду следующие уравнения второго порядка:

Построить геометрическое изображение каждого уравнения. Решение. 1) Этот пример решим достаточно подробно, не прибегая к формулам (7) и (8).
а) Выполним поворот осей координат на угол 


б) Выделим отдельно слагаемые, содержащие произведение 
Ставим условие, чтобы это выражение было тождественно равно нулю. Это возможно при условии
находим 






в) Подставим полученные выражения в последнее уравнение из п. а). Получаем последовательно (слагаемые, содержащие

г) В круглые скобки добавим надлежащие числа для получения полных квадратов. После вычитания соответствующих слагаемых приходим к равносильному уравнению
д) Для приведения этого уравнения к каноническому виду воспользуемся формулами параллельного сдвига, полагая
и последующего почленного деления уравнения на 36. Получаем каноническое уравнение эллипса 

2) Этот пример решим, используя формулы (7) и уравнение (8). Имеем: А = 3, В = 5, С = 3, D = -2, Е = -14, F = -13. Уравнение (8)принимает вид 
По формулам (7) последовательно находим:
В системе координат 
После выделения полных квадратов получаем


и почленно разделим на 4. Получаем каноническое уравнение гиперболы
3) Уравнение (8) в данном случае приводится к виду 





4) Для приведения этого уравнения к каноническому виду достаточно составить полные квадраты:
Получили уравнение окружности радиуса 

5) Соответствующее уравнение (8) имеет вид 
Коэффициенты нового уравнения равны: 

Видео:Лекция 22. Декартова система координат на плоскости и полярная система координатСкачать

Система координат на плоскости
Под системой координат на плоскости понимают способ, позволяющий численно описать положение точки плоскости. Одной из таких систем является прямоугольная (декартова) система координат.
Прямоугольная система координат задается двумя взаимно перпендикулярными прямыми — осями, на каждой из которых выбрано положительное направление и задан единичный (масштабный) отрезок. Единицу масштаба обычно берут одинаковой для обеих осей. Эти оси называют осями координат, точку их пересечения О — началом координат. Одну из осей называют осью абсцисс (осью Ох), другую — осью ординат (осью Оу) (рис. 23).
На рисунках ось абсцисс обычно располагают горизонтально и направленной слева направо, а ось ординат — вертикально и направленной снизу вверх. Оси координат делят плоскость на четыре области — четверти (или квадранты).
Единичные векторы осей обозначают
Систему координат обозначают 
Рассмотрим произвольную точку М плоскости Оху. Вектор
Координатами точки М в системе координат 


Эти два числа х к у полностью определяют положение точки на плоскости, а именно: каждой паре чисел x и у соответствует единственная точка М плоскости, и наоборот.
Способ определения положения точек с помощью чисел (координат) называется методом координат. Сущность метода координат на плоскости состоит в том, что всякой линии на ней, как правило, сопоставляется ее уравнение. Свойства этой линии изучаются путем исследования уравнения линии.
Другой практически важной системой координат является полярная система координат. Полярная система координат задается точкой О, называемой полюсом, лучом Ор, называемым полярной осью, и единичным вектором 
Возьмем на плоскости точку М, не совпадающую с О. Положение точки М определяется двумя числами: ее расстоянием r от полюса О и углом 
Числа r и 


Для получения всех точек плоскости достаточно полярный угол 



Установим связь между прямоугольными и полярными координатами. Для этого совместим полюс О с началом координат системы Оху, а полярную ось — с положительной полуосью Ох. Пусть х и у — прямоугольные координаты точки М, а r и 
Из рисунка 25 видно, что прямоугольные и полярные координаты точки М выражаются следующим образом:
Определяя величину 
Пример:
Дана точка 
Решение:
Находим 
Отсюда 

Основные приложения метода координат на плоскости
Расстояние между двумя точками
Требуется найти расстояние d между точками 
Решение:
Искомое расстояние d равно длине вектора 
Деление отрезка в данном отношении
Требуется разделить отрезок АВ, соединяющий точки 


Решение:
Введем в рассмотрение векторы 


Уравнение (9.1) принимает вид
Учитывая, что равные векторы имеют равные координаты, получаем
Формулы (9.2) и (9.3) называются формулами деления отрезка в данном отношении. В частности, при 

Замечание:
Если 



Площадь треугольника
Требуется найти площадь треугольника ABC с вершинами
Решение:
Опустим из вершин А, В, С перпендикуляры 


Замечание: Если при вычислении площади треугольника получим S = 0, то это означает, что точки А, В, С лежат на одной прямой, если же получим отрицательное число, то следует взять его модуль.
Преобразование системы координат
Переход от одной системы координат в какую-либо другую называется преобразованием системы координат.
Рассмотрим два случая преобразования одной прямоугольной системы координат в другую. Полученные формулы устанавливают зависимость между координатами произвольной точки плоскости в разных системах координат.
Параллельный перенос осей координат
Пусть на плоскости задана прямоугольная система координат Оху. Под параллельным переносом осей координат понимают переход от системы координат Оху к новой системе 
Пусть начало новой системы координат точка 




Так как 
Полученные формулы позволяют находить старые координаты х и у по известным новым х’ и у‘ и наоборот.
Поворот осей координат
Под поворотом осей координат понимают такое преобразование координат, при котором обе оси поворачиваются на один и тот же угол, а начало координат и масштаб остаются неизменными.
Пусть новая система 

Пусть М — произвольная точка плоскости, (х; у) — ее координаты в старой системе и (х’; у’) — в новой системе.
Введем две полярные системы координат с общим полюсом О и полярными осями 


По формулам перехода от полярных координат к прямоугольным имеем
Но 
Полученные формулы называются формулами поворота осей. Они позволяют определять старые координаты (x; у) произвольной точки М через новые координаты (х’;у’) этой же точки М, и наоборот.
Если новая система координат 


выражающие старые координаты х и у произвольной точки через ее новые координаты х’ и у’.
Видео:Прямоугольная система координат в пространстве. 11 класс.Скачать

Линии на плоскости
Линия на плоскости часто задается как множество точек, обладающих некоторым только им присущим геометрическим свойством. Например, окружность радиуса R есть множество всех точек плоскости, удаленных на расстояние R от некоторой фиксированной точки О (центра окружности).
Введение на плоскости системы координат позволяет определять положение точки плоскости заданием двух чисел — ее координат, а положение линии на плоскости определять с помощью уравнения (т. е. равенства, связывающего координаты точек линии).
Уравнением линии (или кривой) на плоскости Оху называется такое уравнение F(x; у) = 0 с двумя переменными, которому удовлетворяют координаты х и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии. Переменные х и у в уравнении линии называются текущими координатами точек линии.
Уравнение линии позволяет изучение геометрических свойств линии заменить исследованием его уравнения.
Так, для того чтобы установить лежит ли точка 
Пример:
Лежат ли точки К(-2;1) и L(1; 1) на линии 2х + у + 3 = 0?
Решение:
Подставив в уравнение вместо х и у координаты точки К, получим 2 • (-2) + 1 + 3 = 0. Следовательно, точка К лежит на данной линии. Точка L не лежит на данной линии, т. к.
Задача о нахождении точек пересечения двух линий, заданных уравнениями 
Если эта система не имеет действительных решений, то линии не пересекаются.
Аналогичным образом вводится понятие уравнения линии в полярной системе координат.
Уравнение 
Линию на плоскости можно задать при помощи двух уравнений:
где х и у — координаты произвольной точки М(х; у), лежащей на данной линии, a t — переменная, называемая параметром; параметр t определяет положение точки (х; у) на плоскости.
Например, если 
Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания линии называется параметрическим, а уравнения (10.1) — параметрическими уравнениями линии.
Чтобы перейти от параметрических уравнений линии к уравнению вида F(x; у) = 0, надо каким-либо способом из двух уравнений исключить параметр t. Например, от уравнений 


Линию на плоскости можно задать векторным уравнением 



Векторному уравнению линии 
Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемешается на плоскости, то указанные уравнения называются уравнениями движения, а линия — траекторией точки, параметр t при этом есть время.
Итак, всякой линии на плоскости соответствует некоторое уравнение вида F(x; у) = 0.
Всякому уравнению вида F(x; у) = 0 соответствует, вообще говоря, некоторая линия, свойства которой определяются данным уравнением (выражение «вообще говоря» означает, что сказанное допускает исключения. Так, уравнению 

В аналитической геометрии на плоскости возникают две основные задачи. Первая: зная геометрические свойства кривой, найти ее уравнение; вторая: зная уравнение кривой, изучить ее форму и свойства.
На рисунках 32-40 приведены примеры некоторых кривых и указаны их уравнения.






Параметрические уравнения циклоиды имеют вид 
Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Уравнения прямой на плоскости
Простейшей из линий является прямая. Разным способам задания прямой соответствуют в прямоугольной системе координат разные виды ее уравнений.
Уравнение прямой с угловым коэффициентом
Пусть на плоскости Оху задана произвольная прямая, не параллельная оси Оу. Ее положение вполне определяется ординатой b точки 
Под углом 
Возьмем на прямой произвольную точку М(х;у) (см. рис. 41). Проведем через точку N ось Nx’, параллельную оси Ох и одинаково с ней направленную. Угол между осью Nx’ и прямой равен а. В системе Nx’y точка М имеет координаты х и у — b. Из определения тангенса угла следует равенство 

которому удовлетворяют координаты любой точки М(х ; у) прямой. Можно убедиться, что координаты любой точки Р<х; у), лежащей вне данной прямой, уравнению (10.2) не удовлетворяют.
Число 
Если прямая проходит через начало координат, то b=0 и, следовательно, уравнение этой прямой будет иметь вид у =kх.
Если прямая параллельна оси Ох, то 

Если прямая параллельна оси Оу, то 

где а — абсцисса точки пересечения прямой с осью Ох. Отметим, что уравнения (10.2) и (10.3) есть уравнения первой степени.
Общее уравнение прямой
Рассмотрим уравнение первой степени относительно х и у в общем виде
где А, В, С — произвольные числа, причем А и В не равны нулю одновременно.
Покажем, что уравнение (10.4) есть уравнение прямой линии. Возможны два случая.
Если В = 0, то уравнение (10.4) имеет вид Ах + С = 0, причем 

Если 

Итак, уравнение (10.4) есть уравнение прямой линии, оно называется общим уравнением прямой.
Некоторые частные случаи общего уравнения прямой:
1) если А = 0, то уравнение приводится к виду 
2) если В = 0, то прямая параллельна оси Оу;
3) если С = 0, то получаем Ах+By = 0. Уравнению удовлетворяют координаты точки O(0; 0), прямая проходит через начало координат.
Уравнение прямой, проходящей через данную точку в данном направлении
Пусть прямая проходит через точку 



Подставляя значение b в уравнение у = kх + b, получим искомое уравнение прямой 
Уравнение (10.5) с различными значениями к называют также уравнениями пучка прямых с центром в точке 
Уравнение прямой, проходящей через две точки
Пусть прямая проходит через точки 

где k — пока неизвестный коэффициент.
Так как прямая проходит через точку 
Отсюда находим 
Предполагается, что в этом уравнении 



Если 


Уравнение прямой в отрезках
Пусть прямая пересекает ось Ох в точке 


Это уравнение называется уравнением прямой в отрезках, так как числа а и b указывают, какие отрезки отсекает прямая на осях координат.
Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
Найдем уравнение прямой, проходящей через заданную точку 

Возьмем на прямой произвольную точку М(х ;у) и рассмотрим вектор 



Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору.
Вектор 
Уравнение (10.8) можно переписать в виде
где А и В — координаты нормального вектора, 
Полярное уравнение прямой
Найдем уравнение прямой в полярных координатах. Ее положение можно определить, указав расстояние р от полюса О до данной прямой и угол 
Для любой точки 
С другой стороны,
Полученное уравнение (10.10) и есть уравнение прямой в полярных координатах.
Нормальное уравнение прямой
Пусть прямая определяется заданием р к 
Но, в силу формул, связывающих прямоугольные и полярные координаты, имеем: 
Уравнение (10.11) называется нормальным уравнением прямой.
Покажем, как привести уравнение (10.4) прямой к виду (10.11).
Умножим все члены уравнения (10.4) на некоторый множитель 

Из первых двух равенств находим
Множитель 

Пример:
Привести уравнение -За; + 4у + 15 = 0 к нормальному виду.
Решение:
Находим нормирующий множитель 

Видео:Координаты на плоскости и в пространстве. Вебинар | МатематикаСкачать

Прямая линия на плоскости. Основные задачи
Угол между двумя прямыми и условия параллельности и перпендикулярности двух прямых
Пусть прямые 

Требуется найти угол 


Решение: Имеем 


Ho 
откуда легко получим величину искомого угла.
Если требуется вычислить острый угол между прямыми, не учитывая, какая прямая является первой, какая — второй, то правая часть формулы (10.12) берется по модулю, т. е.
Если прямые 




Если прямые 





Расстояние от точки до прямой
Пусть заданы прямая L уравнением Ах + By + С = 0 и точка 

Решение:
Расстояние d от точки 




Так как точка 


что и требовалось получить.
Пример:
Найти расстояние от точки 
Решение:
По формуле (10.13) получаем
Видео:9 класс, 4 урок, Простейшие задачи в координатахСкачать

Линии второго порядка на плоскости
Рассмотрим линии, определяемые уравнениями второй степени относительно текущих координат
Коэффициенты уравнения — действительные числа, но по крайней мере одно из чисел А, В или С отлично от нуля. Такие линии называются линиями (кривыми) второго порядка. Ниже будет установлено, что уравнение (11.1) определяет на плоскости окружность, эллипс, гиперболу или параболу. Прежде, чем переходить к этому утверждению, изучим свойства перечисленных кривых.
Окружность
Простейшей кривой второго порядка является окружность. Напомним, что окружностью радиуса R с центром в точке 



Тогда из условия 
Уравнению (11.2) удовлетворяют координаты любой точки
М(х;у) данной окружности и не удовлетворяют координаты никакой точки, не лежащей на окружности.
Уравнение (11.2) называется каноническим уравнением окружности. В частности, полагая 

Уравнение окружности (11.2) после несложных преобразований примет вид 
- коэффициенты при
равны между собой;
- отсутствует член, содержащий произведение ху текущих координат.
Рассмотрим обратную задачу. Положив в уравнении (11.1) значения 
Преобразуем это уравнение:
Отсюда следует, что уравнение (11.3) определяет окружность при условии 

Если же 
Ему удовлетворяют координаты единственной точки 
Если 
Эллипс
Каноническое уравнение эллипса
Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.
Обозначим фокусы через 
Для вывода уравнения эллипса выберем систему координат Оху так, чтобы фокусы 


Пусть М(х ;у) — произвольная точка эллипса. Тогда, согласно определению эллипса, 
Это, по сути, и есть уравнение эллипса.
Преобразуем уравнение (11.5) к более простому виду следующим образом:
Так как а > с, то 
Тогда последнее уравнение примет вид 
Можно доказать, что уравнение (11.7) равносильно исходному уравнению. Оно называется каноническим уравнением эллипса.
Эллипс — кривая второго порядка.
Исследование формы эллипса по его уравнению
Установим форму эллипса, пользуясь его каноническим уравнением. 1. Уравнение (11.7) содержит х и у только в четных степенях, поэтому если точка (х; у) принадлежит эллипсу, то ему также принадлежат точки 
2.Найдем точки пересечения эллипса с осями координат. Положив у = 0, находим две точки 




3. Из уравнения (11.7) следует, что каждое слагаемое в левой части не превосходит единицы, т. е. имеют место неравенства 

4. В уравнении (11.7) сумма неотрицательных слагаемых 
Из сказанного следует, что эллипс имеет форму, изображенную на рис. 50 (овальная замкнутая кривая).
Дополнительные сведения об эллипсе
Форма эллипса зависит от отношения 


Отношение 

причем 
Отсюда видно, что чем меньше эксцентриситет эллипса, тем эллипс будет менее сплющенным; если положить 
Пусть М(х , у) — произвольная точка эллипса с фокусами 

Имеют место формулы

Прямые 
Теорема:
Если r — расстояние от произвольной точки эллипса до какого-нибудь фокуса, d — расстояние от этой же точки до соответствующей этому фокусу директрисы, то отношение 

Из равенства (11.6) следует, что а > b. Если же а Гипербола
Каноническое уравнение гиперболы
Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.
Обозначим фокусы через 
Гипербола есть линия второго порядка.
Исследование формы гиперболы по ее уравнению
Установим форму гиперболы, пользуясь ее каконическим уравнением. 1. Уравнение (11.9) содержит х и у только в четных степенях. Следовательно, гипербола симметрична относительно осей Ох и Оу, а также относительно точки 0(0;0), которую называют центром гиперболы.
2.Найдем точки пересечения гиперболы с осями координат. Положив у = 0 в уравнении (11.9), находим две точки пересечения гиперболы с осью Ox:

Точки 


Отрезок 

3.Из уравнения (11.9) следует, что уменьшаемое 

4. Из уравнения (11.9) гиперболы видно, что когда |x| возрастает, то и |y| возрастает. Это следует из того, что разность 
Из сказанного следует, что гипербола имеет форму, изображенную на рисунке 54 (кривая, состоящая из двух неограниченных ветвей).
Асимптоты гиперболы
Прямая L называется асимптотой неограниченной кривой К, если расстояние d от точки М кривой К до этой прямой стремится к нулю при неограниченном удалении точки М вдоль кривой К от начала координат. На рисунке 55 приведена иллюстрация понятия асимптоты: прямая L является асимптотой для кривой К.
Покажем, что гипербола 
Так как прямые (11.11) и гипербола (11.9) симметричны относительно координатных осей, то достаточно рассмотреть только те точки указанных линий, которые расположены в первой четверти.
Возьмем на прямой 


Как видно, по мере возрастания х знаменатель дроби увеличивается; числитель — есть постоянная величина. Стало быть, длина отрезка MN стремится к нулю. Так как МN больше расстояния d от точки М до прямой, то d и подавно стремится к нулю. Итак, прямые 
При построении гиперболы (11.9) целесообразно сначала построить основной прямоугольник гиперболы (см. рис. 57), провести прямые, проходящие через противоположные вершины этого прямоугольника, — асимптоты гиперболы и отметить вершины 
Уравнение равносторонней гиперболы, асимптотами которой служат оси координат
Гипербола (11.9) называется равносторонней, если ее полуоси равны (а = b ). Ее каноническое уравнение
Асимптоты равносторонней гиперболы имеют уравнения у = х и у = -х и, следовательно, являются биссектрисами координатных углов. Рассмотрим уравнение этой гиперболы в новой системе координат 
на угол 
Подставляем значения х и у в уравнение (11.12):
где
Уравнение равносторонней гиперболы, для которой оси Ох и Оу являются асимптотами, будет иметь вид 
Дополнительные сведения о гиперболе
Эксцентриситетом гиперболы (119) называется отношение расстояния между фокусами к величине действительной оси гиперболы, обозначается
Так как для гиперболы с > а, то эксцентриситет гиперболы больше единицы: 

Отсюда видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение 
Эксцентриситет равносторонней гиперболы равен 
Фокальные радиусы 


Прямые 

Директрисы гиперболы имеют то же свойство 
Кривая, определяемая уравнением 
Очевидно, что гиперболы От 
Парабола
Каноническое уравнение параболы
Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой. Расстояние от фокуса F до директрисы называется параметром параболы и обозначается через р (p > 0).
Для вывода уравнения параболы выберем систему координат Оху так, чтобы ось Ох проходила через фокус F перпендикулярно директрисе в направлении от директрисы к F, а начало координат О расположим посередине между фокусом и директрисой (см. рис. 60). В выбранной системе фокус F имеет координаты 


Пусть М(х;у) — произвольная точка параболы. Соединим точку М с F. Проведем отрезок MN перпендикулярно директрисе. Согласно определению параболы MF = MN. По формуле расстояния между двумя точками находим:
Возведя обе части уравнения в квадрат, получим
Уравнение (11.13) называется каноническим уравнением параболы. Парабола есть линия второго порядка.
Исследование форм параболы по ее уравнению
- В уравнении (11.13) переменная у входит в четной степени, значит, парабола симметрична относительно оси Ох; ось Ох является осью симметрии параболы.
- Так как р > 0, то из (11.13) следует, что
. Следовательно, парабола расположена справа от оси Оу.
- При х = 0 имеем у = 0. Следовательно, парабола проходит через начало координат.
- При неограниченном возрастании х модуль у также неограниченно возрастает. Парабола
имеет вид (форму), изображенный на рисунке 61. Точка 0(0; 0) называется вершиной параболы, отрезок FM = r называется фокальным радиусом точки М.
Уравнения 
Нетрудно показать, что график квадратного трехчлена 

Видео:№917. Начертите прямоугольную систему координат Оху и координатные векторы i и j. ПостройтеСкачать

Общее уравнение линий второго порядка
Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям
Найдем сначала уравнение эллипса с центром в точке 


В этой системе координат уравнение эллипса имеет вид
Так как 
Аналогично рассуждая, получим уравнение гиперболы с центром в точке 
И, наконец, параболы, изображенные на рисунке 65, имеют соответствующие уравнения.


Уравнение
Уравнения эллипса, гиперболы, параболы и уравнение окружности 
где коэффициенты А и С не равны нулю одновременно.
Возникает вопрос: всякое ли уравнение вида (11.14) определяет одну из кривых (окружность, эллипс, гипербола, парабола) второго порядка? Ответ дает следующая теорема.
Теорема:
Уравнение (11.14) всегда определяет: либо окружность (при А = С), либо эллипс (при 


Пример:
Установить вид кривой второго порядка, заданной уравнением
Решение:
Предложенное уравнение определяет эллипс 
Получилось каноническое уравнение эллипса с центром в 
Пример:
Установить вид кривой второго порядка, заданной уравнением
Решение:
Указанное уравнение определяет параболу (С = 0). Действительно,
Получилось каноническое уравнение параболы с вершиной в точке
Пример:
Установить вид кривой второго порядка, заданной уравнением
Решение:
Это уравнение определяет две пересекающиеся прямые 2х + у + 6 = 0 и 2х-у-2 = 0.
Общее уравнение второго порядка
Рассмотрим теперь общее уравнение второй степени с двумя неизвестными:
Оно отличается от уравнения (11.14) наличием члена с произведением координат 
Используя формулы поворота осей (с. 63)
выразим старые координаты через новые:
Выберем угол а так, чтобы коэффициент при 
Таким образом, при повороте осей на угол а, удовлетворяющий условию (11.17), уравнение (11.15) сводится к уравнению (11.14).
Вывод: общее уравнение второго порядка (11.15) определяет на плоскости (если не считать случаев вырождения и распадения) следующие кривые: окружность, эллипс, гиперболу, параболу.
Замечание:
Если А = С, то уравнение (11.17) теряет смысл. В этом случае 


Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:




















































Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Метод координат для ЕГЭ с нуля за 30 минут.Скачать

Общее уравнение прямой: описание, примеры, решение задач
Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.
Видео:Координаты вектора. 9 класс.Скачать

Общее уравнение прямой: основные сведения
Пусть на плоскости задана прямоугольная система координат O x y .
Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .
указанная теорема состоит из двух пунктов, докажем каждый из них.
- Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.
Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x — x 0 ) + B ( y — y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .
Полученное уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) не являлись бы перпендикулярными, и равенство A ( x — x 0 ) + B ( y — y 0 ) = 0 не было бы верным.
Следовательно, уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.
- Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .
Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .
Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:
n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) = 0
Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C : C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .
Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.
Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .
Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.
Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .
Рассмотрим конкретный пример общего уравнения прямой.
Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.
Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.
Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.
Видео:Уравнение окружности (1)Скачать

Неполное уравнение общей прямой
Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.
Разберем все вариации неполного общего уравнения прямой.
- Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу — C B .
- Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
- Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
- Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
- Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .
Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.
Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.
Решение
Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:
Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0
Ответ: 7 x — 2 = 0
На чертеже изображена прямая, необходимо записать ее уравнение.
Решение
Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .
Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = — 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y — 3 = 0 .
Ответ: y — 3 = 0 .
Видео:ДЕКАРТОВЫ КООРДИНАТЫ. Контрольная № 3 Геометрия 9 класс.Скачать

Общее уравнение прямой, проходящей через заданную точку плоскости
Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x — x 0 ) + B ( y — y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .
Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.
Даны точка М 0 ( — 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , — 2 ) . Необходимо записать уравнение заданной прямой.
Решение
Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:
A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 1 · ( x — ( — 3 ) ) — 2 · y ( y — 4 ) = 0 ⇔ ⇔ x — 2 y + 22 = 0
Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:
A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0
Теперь найдем значение С, используя заданную условием задачи точку М 0 ( — 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .
Ответ: x — 2 · y + 11 = 0 .
Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.
Решение
Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:
2 3 x 0 — y 0 — 1 2 = 0
Определяем y 0 : 2 3 · ( — 3 ) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2
Ответ: — 5 2
Видео:Полярная система координатСкачать

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно
Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.
Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .
Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .
Это равенство возможно записать как пропорцию: x + C A — B = y A .
В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .
Перепишем равенство в виде пропорции: x — B = y + C B A .
Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.
Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.
Решение
Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .
Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.
Ответ: x — 3 = y — 4 3 0 .
Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.
Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.
Решение
Осуществим переход от общего уравнения к каноническому:
2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2
Теперь примем обе части полученного канонического уравнения равными λ , тогда:
x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R
Ответ: x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R
Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .
Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.
Решение
Произведем нужные действия по алгоритму:
2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x
Ответ: y = — 2 7 x .
Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :
A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1
Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.
Решение
Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .
Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .
Преобразуем далее в необходимый вид: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .
Ответ: x — 1 2 + y 1 14 = 1 .
В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.
Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:
x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0
Каноническое уравнение преобразуется к общему по следующей схеме:
x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x ( y — y 1 ) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0
Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:
x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0
Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.
Решение
Осуществим переход от параметрических уравнений к каноническому:
x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0
Перейдем от канонического к общему:
x + 1 2 = y — 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y — 4 ) ⇔ y — 4 = 0
Ответ: y — 4 = 0
Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.
Решение:
Просто перепишем уравнение в необходимом виде:
x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0
Ответ: 1 3 x + 2 y — 1 = 0 .
Составление общего уравнения прямой
Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x — x 0 ) + B ( y — y 0 ) = 0 . Там же мы разобрали соответствующий пример.
Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.
Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.
Решение
Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , — 3 ) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:
A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 2 ( x — 4 ) — 3 ( y — 1 ) = 0 ⇔ 2 x — 3 y — 5 = 0
Ответ: 2 x — 3 y — 5 = 0 .
Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.
Решение
Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .
Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:
A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 3 ( x — 0 ) + 5 ( y — 0 ) = 0 ⇔ 3 x + 5 y = 0


































































































































































































































































































































































































равны между собой;





































. Следовательно, парабола расположена справа от оси Оу.
имеет вид (форму), изображенный на рисунке 61. Точка 0(0; 0) называется вершиной параболы, отрезок FM = r называется фокальным радиусом точки М.

























