Решения системы линейных уравнений методом крамора

Метод Крамера решения систем линейных уравнений

Видео:Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается Решения системы линейных уравнений методом крамора(дельта).

Определители Решения системы линейных уравнений методом крамора

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

Решения системы линейных уравнений методом крамора;

Решения системы линейных уравнений методом крамора.

Формулы Крамера для нахождения неизвестных:

Решения системы линейных уравнений методом крамора.

Найти значения Решения системы линейных уравнений методом крамораи Решения системы линейных уравнений методом краморавозможно только при условии, если

Решения системы линейных уравнений методом крамора.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Решения системы линейных уравнений методом крамора. (2)

Согласно теореме Крамера имеем:

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Итак, решение системы (2):
Решения системы линейных уравнений методом крамора

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Видео:Решение систем линейных алгебраических уравнений методом Крамера.Скачать

Решение систем линейных алгебраических уравнений  методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Решения системы линейных уравнений методом крамора

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

* Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

* Решения системы линейных уравнений методом крамора,

** Решения системы линейных уравнений методом крамора,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Решения системы линейных уравнений методом крамора

Третий случай: система линейных уравнений решений не имеет

* Решения системы линейных уравнений методом крамора

** Решения системы линейных уравнений методом крамора.

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

Решения системы линейных уравнений методом крамора.

На основании теоремы Крамера
Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора
………….
Решения системы линейных уравнений методом крамора,

где
Решения системы линейных уравнений методом крамора

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Пример 2. Решить систему линейных уравнений методом Крамера:

Решения системы линейных уравнений методом крамора.

Решение. Находим определитель системы:

Решения системы линейных уравнений методом крамора

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

По формулам Крамера находим:
Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

Решения системы линейных уравнений методом крамора.

Решение. Находим определитель системы:

Решения системы линейных уравнений методом крамора

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

По формулам Крамера находим:

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Видео:10. Метод Крамера решения систем линейных уравнений.Скачать

10. Метод Крамера решения систем линейных уравнений.

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

Решения системы линейных уравнений методом крамора.

Пример 5. Решить систему линейных уравнений методом Крамера:

Решения системы линейных уравнений методом крамора.

Видео:Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

К началу страницы

Видео:2 минуты на формулы Крамера ➜ Решение систем уравнений методом КрамераСкачать

2 минуты на формулы Крамера ➜ Решение систем уравнений методом Крамера

Пройти тест по теме Системы линейных уравнений

Видео:Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решения системы линейных уравнений методом крамора

Решение. Находим определитель системы:

Решения системы линейных уравнений методом крамора

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Решения системы линейных уравнений методом крамора

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Решения системы линейных уравнений методом крамора

Находим определители при неизвестных

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

По формулам Крамера находим:

Решения системы линейных уравнений методом крамора,

Решения системы линейных уравнений методом крамора.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решения системы линейных уравнений методом крамора

Решение. Находим определитель системы:

Решения системы линейных уравнений методом крамора

Находим определители при неизвестных

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

По формулам Крамера находим:

Решения системы линейных уравнений методом крамора,

Решения системы линейных уравнений методом крамора,

Решения системы линейных уравнений методом крамора.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

Решения системы линейных уравнений методом крамора.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Решения системы линейных уравнений методом крамора

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Решения системы линейных уравнений методом крамора

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

Решения системы линейных уравнений методом крамора,

Решения системы линейных уравнений методом крамора,

Решения системы линейных уравнений методом крамора,

Решения системы линейных уравнений методом крамора.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Видео:Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Метод Крамера для решения СЛАУ

В данной статье мы разберем, как найти неизвестные переменные по методу Крамера и опишем решение систем линейных уравнений.

Метод Крамера предназначен для того, чтобы решать системы линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равняется числу уравнений, а определитель основной матрицы не равен нулю.

Видео:Метод Крамера для решения систем линейных алгебраических уравнений (СЛАУ) в ExcelСкачать

Метод Крамера для решения систем линейных алгебраических уравнений (СЛАУ) в Excel

Метод Крамера — вывод формул

Найти решение системы линейных уравнений вида:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

В этой системе x 1 , x 2 , . . . , x n — неизвестные переменные,

a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n — числовые коэффициенты,

b 1 , b 2 , . . . , b n — свободные члены.

Решение такой системы линейных алгебраических уравнений — набор значений x 1 , x 2 , . . . , x n , при которых все уравнения системы становятся тождественными.

Матричный вид записи такой системы линейных уравнений:

A X = B , где A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n — основная матрица системы, в которой ее элементы — это коэффициенты при неизвестных переменных;

B = b 1 b 2 ⋮ b n — матрица-столбец свободных членов;

X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных.

После того как мы найдем неизвестные переменные x 1 , x 2 , . . . , x n , матрица X = x 1 x 2 ⋮ x n становится решением системы уравнений, а равенство A X = B обращается в тождество.

Метод Крамера основан на 2-х свойствах определителя матрицы:

  • Определитель квадратной матрицы A = a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n равняется сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:

a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n = a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q

  • Сумма произведений какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующие элементы другой матрицы равняется нулю:

a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = 0 a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q = 0

p = 1 , 2 , . . . , n , q = 1 , 2 , . . . , n p не равно q

Приступаем к нахождению неизвестной переменной x 1 :

  • Умножаем обе части первого уравнения системы на А 11 , обе части второго уравнения на А 21 и т.д. Таким образом, мы умножаем уравнения системы на соответствующие алгебраические дополнения 1-го столбца матрицы А :

A 11 a 11 x 1 + A 11 a 12 x 2 + . . . + A 11 a 1 n x n = A 11 b 1 A 21 a 21 x 1 + A 21 a 22 x 2 + . . . + A 21 x 2 n x n = A 21 b 2 ⋯ A n 1 a n 1 x 1 + A n 1 a n 2 x 2 + . . . + A n 1 a n n x n = A n 1 b n

  • Складываем все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных , и приравниваем получившуюся сумму к сумме всех правых частей уравнения:

x 1 ( A 11 a 11 + A 21 a 21 + . . . + A n 1 a n 1 ) + + x 2 ( A 11 a 12 + A 21 a 22 + . . . + A n 1 a n 2 ) + + . . . + + x n ( A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n ) = = A 11 b 1 + A 21 b 2 + . . . + A n 1 b n

Если воспользоваться свойствами определителя, то получится:

А 11 а 11 + А 21 а 21 + . . . + А n 1 a n 1 = А А 11 а 12 + А 21 а 22 + . . . + А n 1 а n 2 = 0 ⋮ A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n = 0

A 11 b 1 + A 21 b 2 + . . . + A n 1 b n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

Предыдущее равенство будет иметь следующий вид:

x 1 A = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .

x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n A

Таким же образом находим все оставшиеся неизвестные переменные.

∆ = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , ∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n ,

∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , . ∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .

то получаются формулы для нахождения неизвестных переменных по методу Крамера:

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .

Видео:Линейная алгебра: матрицы, определители, метод Крамера. Высшая математикаСкачать

Линейная алгебра: матрицы, определители, метод Крамера. Высшая математика

Алгоритм решения СЛАУ методом Крамера

  • Необходимо вычислить определитель матрицы системы и убедиться, что он не равен нулю.
  • Найти определители

∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

Эти определители являются определителями матриц, которые получены из матрицы А путем замены k -столбца на столбец свободных членов.

  • Вычислить неизвестные переменные при помощи формул:

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .

  • Выполнить проверку результатов: если все определители являются тождествами, то решение найдено верно.

Видео:Линейная алгебра, 8 урок, Метод КрамераСкачать

Линейная алгебра, 8 урок, Метод Крамера

Примеры решения СЛАУ методом Крамера

Найти решение неоднородной системы линейных уравнений методом Крамера:

3 x 1 — 2 x 2 = 5 6 2 x 1 + 3 x 2 = 2

Основная матрица представлена в виде 3 — 2 2 3 .

Мы можем вычислить ее определитель по формуле:

a 11 a 12 a 21 a 22 = a 11 × a 22 — a 12 × a 21 : ∆ = 3 — 2 2 3 = 3 × 3 — ( — 2 ) × 2 = 9 + 4 = 13

Записываем определители ∆ x 1 и ∆ x 2 . Заменяем 1-ый столбец основной матрицы на столбец свободных членов и получаем определитель ∆ x 1 = 5 6 — 2 2 3

По аналогии заменяем второй столбец основной матрицы на столбец свободных членов и получаем определитель:

Находим эти определители:

∆ x 1 = 5 6 — 2 2 3 = 5 6 × 3 — 2 ( — 2 ) = 5 2 + 4 = 13 2

∆ x 2 = 3 5 6 2 2 = 3 × 2 — 5 6 × 2 = 6 — 5 3 = 13 3

Находим неизвестные переменные по следующим формулам

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆

x 1 = ∆ x 1 ∆ = 13 2 13 = 1 2

x 2 = ∆ x 2 ∆ = 3 13 = 1 3

Выполняем проверку — подставляем полученные значения переменных в в исходную систему уравнений:

3 1 2 — 2 1 3 = 5 6 2 1 2 + 3 1 3 = 2 ⇔ 5 6 = 5 6 2 = 2

Оба уравнения превращаются в тождества, поэтому решение верное.

Ответ: x 1 = 1 2 , x 2 = 1 3

Поскольку некоторые элементы системы линейных уравнений могут равняться нулю, то в системе не будет соответствующих неизвестных переменных.

Найти решение 3-х нелинейных уравнений методом Крамера с 3-мя неизвестными:

2 y + x + z = — 1 — z — y + 3 x = — 1 — 2 x + 3 z + 2 y = 5

За основную матрицу нельзя брать 2 1 1 — 1 — 1 — 3 — 2 3 2 .

Необходимо привести к общему порядку все неизвестные переменные во всех уравнениях системы:

x + 2 y + z = — 1 3 x — y — z = — 1 — 2 x + 2 y + 3 z = 5

С этого момента основную матрицу хорошо видно:

1 2 1 3 — 1 — 1 — 2 2 3

Вычисляем ее определитель:

∆ = 1 2 1 3 — 1 — 1 — 2 2 3 = 1 × ( — 1 ) × 3 + 2 × ( — 1 ) ( — 2 ) + 1 × 2 × 3 — 1 ( — 1 ) ( — 2 ) — 2 × 3 × 3 — — 1 ( — 1 ) × 2 = — 11

Записываем определители и вычисляем их:

∆ x = — 1 2 1 — 1 — 1 — 1 5 2 3 = ( — 1 ) ( — 1 ) × 3 + 2 ( — 1 ) × 5 + 1 ( — 1 ) × 2 — 1 ( — 1 ) × 5 — 2 ( — 1 ) × 3 — — 1 ( — 1 ) × 2 = 0

∆ y = 1 — 1 1 3 — 1 — 1 — 2 5 3 = 1 ( — 1 ) × 3 + ( — 1 ) ( — 1 ) ( — 2 ) + 1 × 3 × 5 — 1 ( — 1 ) ( — 2 ) — ( — 1 ) — — 1 ( — 1 ) × 2 = 22

∆ z = 1 2 — 1 3 — 1 — 1 — 2 2 5 = 1 ( — 1 ) × 5 + 2 ( — 1 ) ( — 2 ) + ( — 1 ) × 3 × 2 — ( — 1 ) ( — 1 ) ( — 2 ) — 2 × 3 × 5 — — 1 ( — 1 ) × 2 = — 33

Находим неизвестные переменные по формулам:

x = ∆ x ∆ , y = ∆ y ∆ , z = ∆ z ∆ .

x = ∆ x ∆ = 0 — 11 = 0

y = ∆ y ∆ = 22 — 11 = — 2

z = ∆ z ∆ = — 33 — 11 = 3

Выполняем проверку — умножаем основную матрицу на полученное решение 0 — 2 3 :

1 2 1 3 — 1 — 1 — 2 2 3 × 0 — 2 3 = 1 × 0 + 2 ( — 2 ) + 1 × 3 3 × 0 + ( — 1 ) ( — 2 ) + ( — 1 ) × 3 ( — 2 ) × 0 + 2 ( — 2 ) + 3 × 3 = — 1 — 1 5

Результатом являются столбцы свободных членов исходной системы уравнений, следовательно, решение верное.

Ответ: x = 0 , y = — 2 , z = 3

Видео:Решение системы уравнений методом Крамера 4x4Скачать

Решение системы уравнений методом Крамера 4x4

Метод Крамера. Примеры решения систем линейных алгебраических уравнений методом Крамера.

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:

  1. Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $Deltaneq 0$.
  2. Для каждой переменной $x_i$($i=overline$) необходимо составить определитель $Delta_$, полученный из определителя $Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
  3. Найти значения неизвестных по формуле $x_i=frac<Delta_<x_>>$ ($i=overline$).

Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.

Матрица системы такова: $ A=left( begin 3 & 2\ -1 & 5 end right)$. Определитель этой матрицы:

$$Delta=left| begin 3 & 2\ -1 & 5 endright|=3cdot 5-2cdot(-1)=17.$$

Как вычисляется определитель второго порядка можете глянуть здесь.

Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $Delta_$ и $Delta_$. Определитель $Delta_$ получаем из определителя $Delta=left| begin 3 & 2\ -1 & 5 endright|$ заменой первого столбца (именно этот столбец содержит коэффициенты при $x_1$) столбцом свободных членов $left(begin -11\ 15endright)$:

Аналогично, заменяя второй столбец в $Delta=left|begin3&2\-1&5endright|$ столбцом свободных членов, получим:

Теперь можно найти значения неизвестных $x_1$ и $x_2$.

В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.

$$Delta=left| begin 2 & 1 & -1\ 3 & 2 & 2 \ 1 & 0 & 1 endright|=4+2+2-3=5.$$

Как вычисляется определитель третьего порядка можете глянуть здесь.

Заменяя первый столбец в $Delta$ столбцом свободных членов, получим $Delta_$:

$$ Delta_=left| begin 3 & 1 & -1\ -7 & 2 & 2 \ -2 & 0 & 1 endright|=6-4-4+7=5. $$

Заменяя второй столбец в $Delta$ столбцом свободных членов, получим $Delta_$:

$$ Delta_=left| begin 2 & 3 & -1\ 3 & -7 & 2 \ 1 & -2 & 1 endright|=-14+6+6-7-9+8=-10. $$

Заменяя третий столбец в $Delta$ столбцом свободных членов, получим $Delta_$:

$$ Delta_=left| begin 2 & 1 & 3\ 3 & 2 & -7 \ 1 & 0 & -2 endright|=-8-7-6+6=-15. $$

Учитывая все вышеизложенное, имеем:

Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно.

Решить СЛАУ $left <begin& 2x_1+3x_2-x_3=15;\ & -9x_1-2x_2+5x_3=-7. endright.$ используя метод Крамера.

Матрица системы $ left( begin 2 & 3 & -1\ -9 & -2 & 5 end right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:

Теперь матрица системы $ left( begin 2 & 3 \ -9 & -2 end right) $ стала квадратной, и определитель её $Delta=left| begin 2 & 3\ -9 & -2 endright|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:

Ответ можно записать в таком виде: $left <begin& x_1=frac;\ & x_2=frac;\ & x_3in R. endright.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.

Матрица системы $left(begin 1 & -5 & -1 & -2 & 3 \ 2 & -6 & 1 & -4 & -2 \ -1 & 4 & 5 & -3 & 0 endright)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:

Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

💡 Видео

Метод Крамера Пример РешенияСкачать

Метод Крамера Пример Решения

Решение систем уравнений. Метод Крамера для системы линейных уравнений с двумя неизвестными.Скачать

Решение систем уравнений. Метод Крамера для системы линейных уравнений с двумя неизвестными.

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Решение СЛАУ методом Крамера. Линейная алгебраСкачать

Решение СЛАУ методом Крамера. Линейная алгебра

Метод Крамера НАГЛЯДНО за 4 минуты. Решение системы линейных уравненийСкачать

Метод Крамера НАГЛЯДНО за 4 минуты. Решение системы линейных уравнений

Лекция 10. Решение систем линейных уравнений по формулам КрамераСкачать

Лекция 10. Решение систем линейных уравнений по формулам Крамера

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математикаСкачать

Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математика
Поделиться или сохранить к себе: