Решение задач составлением дробного уравнения

Решение задач с помощью дробных рациональных уравнений

Примеры

Пример 1. От посёлка до речки 60 км. Утром турист на скутере отправился на речку. Вечером он возвратился в посёлок, но при этом ехал со скоростью на 10 км/ч меньшей и потратил на дорогу на 18 мин больше. Сколько времени ехал турист от речки к посёлку?

Пусть t — время вечером, на дорогу от речки к посёлку.

Тогда время утром, на дорогу от посёлка к речке t- $frac$ = t-0,3 (ч)

По условию разность скоростей равна 10:

$$1,8=t(t-0,3), t neq 0, t neq 0,3$$

$$ D = 0,3^2-4 cdot (-1,8) = 0,09+7,2=7,29 = 2,7^2 $$

$$ t = frac = left[ begin t_1 = -1,1 \ t_2 = 1,5 end right. $$

Выбираем положительный корень, t = 1,5 ч

Пример 2. Катер прошёл по течению 120 км. На этот же путь против течения от тратит времени в 1,5 раза больше. Найдите скорость течения, если скорость катера в стоячей воде 20 км/ч.

Пусть u — скорость течения

По условию время против течения в 1,5 раз больше:

$$ 1,5(20-u) = 20+u, u neq pm 20 $$

Пример 3. В раствор, содержащий 50 г соли, добавили 150 г воды. В результате концентрация соли уменьшилась на 7,5%. Найдите первоначальную массу раствора.

Пусть x — масса воды в первоначальном растворе, в граммах.

По условию разность концентраций:

$$ 50 cdot 150 = frac (x+50)(x+200), x neq -50, x neq -200 $$

$$ D = 250^2-4 cdot (-90000) = 62500+360000 = 100(625+3600) = $$

$$ = 100 cdot 4225 = 650^2 $$

$$ x = frac = left[ begin x_1 = -450 \ x_2 = 200 end right. $$

Выбираем положительный корень x=200 г – начальное количество воды в растворе. Начальная масса всего раствора: 50+200 = 250 г.

Пример 4. Мастер и его ученик, работая вместе, выполняют норму на 8 ч. Если каждый работает самостоятельно, то мастер тратит на выполнение нормы на 12 ч меньше, чем ученик. Сколько часов тратит каждый из них на выполнении нормы?

Пусть N изделий – это норма, t — время, потраченное мастером.

Из последней строки таблицы получаем:

$$ 8(2t+12) = t(t+12), t neq 0, t neq -12$$

$$ t^2-4t-96 = 0 Rightarrow (t-12)(t+8) = 0 Rightarrow left[ begin t_1 = -8 \ t_2 = 12 end right. $$

Выбираем положительный корень, t=12 ч — время, которое мастер потратит самостоятельно. Ученик потратит 12+12=24 ч.

Ответ: 12 ч и 24 ч

Пример 5*. Один фрилансер может выполнить проект на 12 дней быстрее, чем второй. Над новым проектом первый фрилансер сначала проработал самостоятельно 6 дней, а затем к нему присоединился второй. Через 3 дня совместной работы frac проекта было готово.

За сколько дней каждый из фрилансеров может выполнить проект самостоятельно? За сколько дней проект был фактически выполнен?

Пусть d — количество дней первого фрилансера при самостоятельной работе.

Видео:Текстовые задачи с дробно-рациональными уравнениями. Как составить уравнение по условию задачи.Скачать

Текстовые задачи с дробно-рациональными уравнениями. Как составить уравнение по условию задачи.

Решение задач с помощью дробных рациональных уравнений табличным методом

Разделы: Математика

Математика в наши дни проникает во все сферы жизни. Овладение практически любой профессией требует тех или иных знаний по математике. Особое значение в этом смысле имеет умение смоделировать математически определённые реальные ситуации. Данное умение интегрирует в себе разнообразные специальные умения, адекватные отдельным элементам математических знаний, их системам, а также различные мыслительные приёмы, характеризующие культуру мышления.

В школьной математике знакомство с математическим моделированием основано, прежде всего, на решении текстовых задач. Текстовая задача несет в себе важные элементы математического моделирования. Решая ее, учащийся некие производственные, экономические, житейские связи зашифровывает с помощью математических символов, придавая им абстрактную математическую форму. Решая уравнения, учащийся расшифровывает результат, согласуя его со здравым смыслом. Вот почему решению текстовых задач, этому важнейшему мостику между математикой и ее приложениями должно уделяться особое внимание. При этом представляется, что техника решения текстовых задач может отрабатываться на любых задачах. Было бы наивным думать, что задача на движение, начинающаяся словами «Два автомобиля:» непременно предназначена для будущих водителей, а для школы со спортивным уклоном она должна начинаться словами «Два лыжника:».

Применение на практике различных задач на составление уравнений позволяет создавать такие учебные ситуации, которые требуют от учащегося умения смоделировать математически определённые физические, химические, экономические процессы и явления, составить план действия в решении реальной проблемы. Практика последних лет говорит о необходимости формирования умений решения задач на составление уравнений различных типов ещё и в связи с включением их в содержание ГИА и ЕГЭ.

Однако, анализ образовательной практики по данному направлению говорит о том, что значительная часть учащихся испытывает серьёзные затруднения при решении задач на составление уравнений. В большей степени это связано с недостаточной сформированностью у учащихся умения составлять план действий, алгоритм решения конкретной задачи, культурой моделирования явлений и процессов. Большинство учащихся решают такие задачи лишь на репродуктивном уровне.

Решению текстовых задач предшествует достаточно долгое время, отводимое на отработку решения уравнений. Начиная с 8 класса, как только выучены дробные рациональные выражения, решения задач по алгебре практически все сводятся к решению дробных рациональных уравнений, которые, в свою очередь, включают чаще всего решение квадратных уравнений.

В 8 классе решение задач с помощью дробных рациональных уравнений как показывает опыт эффективнее решать табличным методом, так как он является более наглядным, что важно для подготовки к ГИА в 9 классе.

Все задачи, решаемые с помощью дробных рациональных уравнений, можно разделить на несколько групп:

  • Задачи на движение по местности.
  • Задачи на движение по воде.
  • Задачи на работу.
  • Задачи на нахождение дробей и т.д.

Начинать обучение следует с простых задач, условия которых полностью соответствуют названиям основных типов, и сводящихся к решению дробных рациональных уравнений. Затем можно приступать к решению более сложных задач. Рекомендуется подобрать разноуровневые задачи по каждому типу, что дает возможность работать со школьниками разных математических способностей.

Мы стараемся научить детей строить таблицы с данными величинами задачи, слева обозначаются объекты (автомобили, лодки, пешеходы, самолеты и т.д.), сверху в колонках — величины, характеризующие данную задачу, и обязательно единицы их измерения. И дети понимают, что из трех величин, зная две, всегда можно записать третью.

Приведем пример оформления задачи:

Автобус-экспресс отправился от вокзала в аэропорт, находящийся на расстоянии 120км от вокзала. Пассажир, опоздавший на 10 минут на автобус, решил добраться до аэропорта на такси. Скорость такси на 10км/ч больше скорости автобуса. С какой скорость ехал автобус, если он приехал в аэропорт одновременно с такси?

Пусть Решение задач составлением дробного уравнениякм/ч — скорость автобуса, тогда составим и заполним таблицу:

Скорость (км/ч)Время (ч)Путь (км)
АвтобусРешение задач составлением дробного уравненияРешение задач составлением дробного уравненияРешение задач составлением дробного уравнения
ТаксиРешение задач составлением дробного уравненияРешение задач составлением дробного уравненияРешение задач составлением дробного уравнения

Т.к. по условию задачи пассажир опоздал на автобус на 10 минут =Решение задач составлением дробного уравнениячаса, то составим и решим уравнение:

Решение задач составлением дробного уравнения, ОДЗ: Решение задач составлением дробного уравнения>0 (т.к. скорость положительна)

720(х+10) — 720х= х (х+10),

Далее решая квадратное уравнение, получаем:

-90 — не входит в ОДЗ, значит, скорость автобуса равна 80 км/ч.

Основная часть класса уверенно заполняет таблицу и составляет уравнение.

В зависимости от выделенного времени, обучаемым может быть предложен широкий спектр мероприятий — семинары, кружки, факультативы, индивидуальные и групповые консультации и т.д., в рамках которых обучаемые более глубоко осваивают решение задач с помощью уравнений.

Практикум по решению задач табличным методом с помощью дробных рациональных уравнений можно провести во второй половине дня на групповой консультации по математике, что целесообразно в рамках школы полного дня.

Список предлагаемых задач:

Числитель обыкновенной дроби на 4 меньше ее знаменателя. Если к числителю этой дроби прибавить 19, а к знаменателю 28, то она увеличится на Решение задач составлением дробного уравнения. Найдите эту дробь.

Теплоход, собственная скорость которого 18 км/ч, прошел 50 км по течению реки и 8 км против течения, затратив на весь путь 3 часа. Какова скорость течения реки?

Два комбайна убрали поле за 4 дня. За сколько дней мог убрать поле каждый комбайн, если одному из них для выполнения этой работы потребовалось бы на 6 дней меньше, чем другому?

Моторная лодка прошла против течения 8 км и вернулась обратно, затратив на обратный путь на 30 мин меньше, чем при движении против течения. Найдите скорость лодки в неподвижной воде, если скорость течения равна 4 км/ч.

Расстояние 700 км экспресс проходит на 4 часа быстрее товарного поезда, так как его скорость больше скорости товарного поезда на 20 км/ч. Определите скорость каждого из поездов, если известно, что они движутся с постоянной скоростью без остановок.

Мастеру на выполнение заказа потребуется на 5 дней меньше, чем его ученику, но при совместной работе они выполнят заказ на 4 дня быстрее, чем мастер, работающий в одиночку. За сколько дней выполнит заказ мастер, работая в одиночку?

На участке пути длиной 300 км поезд увеличил скорость на 10 км/ч, в результате чего прибыл на конечную станцию на 1 час раньше, чем планировалось по расписанию. С какой скоростью должен был идти поезд по расписанию?

Прозаик хочет набрать на компьютере рукопись объемом 450 страниц. Если он будет набирать на 5 страниц в день больше, чем запланировал, то закончит работу на 3 дня раньше. Сколько страниц в день планирует набирать прозаик?

Дорога между пунктами А и В состоит из подъема и спуска, а ее длина равна 19 км. Пешеход прошел путь из А в В за 5 часов. Время его движения на спуске составило 4 часа. С какой скоростью пешеход шел на спуске, если скорость его движения на подъеме меньше скорости движения на спуске на 1 км/ч?

Велосипедист отправился с некоторой скоростью из города А в город В, расстояние между которыми равно 88 км. Возвращаясь из В в А, он ехал поначалу с той же скоростью, но через 2 часа пути вынужден был сделать остановку на 10 минут. После этого он продолжил путь в А, увеличив скорость на 2 км/ч, и в результате затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В.

Количество решаемых задач может меняться в зависимости от отводимого на это время.

Используемая литература:

  • И.Л.Бродский, А.М.Видус, А.Б.Коротаев «Сборник текстовых задач по математике для профильных классов».
  • В.И. Жохов, Ю.Н.Макарычев, Н.Г.Миндюк «Дидактические материалы по алгебре 8 класс».
  • Сборник задач для подготовки и проведения письменного экзамена по алгебре за курс основной школы под редакцией С.А.Шестакова.
  • Ш.А.Алимов, М.Ю.Колягин и др. «Алгебра 8 класс».
  • А.П.Ершова, В.В.Голобородько, А.С.Ершова «Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса».
  • Видео:Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)Скачать

    Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)

    Самостоятельная работа по теме: «Решение задач составлением дробного рационального уравнения»

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    «Актуальность создания школьных служб примирения/медиации в образовательных организациях»

    Свидетельство и скидка на обучение каждому участнику

    1. Лодка за одно и то же время может проплыть 36 км по течению реки или 20 км – против течения. Найдите скорость лодки по течению реки, если скорость течения составляет 2 км/ч.

    2. Велосипедист проехал 24 км, а мотоциклист – 10 км. Скорость мотоциклиста на 18 км/ч больше скорости велосипедиста. Найдите скорости обоих, если известно, что велосипедист был в пути на 1 час больше, чем мотоциклист.

    3. Грузчики планировали за некоторое время разгрузить 160 ящиков. Однако они справились с работой на три часа раньше срока, так как разгружали в час на 12 ящиков больше, чем планировали раньше. Сколько ящиков в час они разгружали на самом деле?

    1. Моторная лодка за одно и то же время может проплыть 36 км против течения реки или 48 км – по течению. Найдите скорость лодки против течения реки, если скорость течения составляет 2 км/ч.

    2. Пешеход прошел 15 км, а велосипедист проехал 27 км. Скорость велосипедиста на 12 км/ч больше скорости пешехода. Найдите скорости обоих, если известно, что велосипедист был в пути на 1 час меньше, чем пешеход.

    3. Машинистка должна была напечатать за определенное время 200 страниц. Печатая в день на 5 страниц больше, чем планировала, она завершила работу на два дня раньше срока. Сколько страниц в день печатала на самом деле машинистка?

    1. За одно и то же время велосипедист проехал 4 км, а мотоциклист – 10 км. Скорость мотоциклиста на 18 км/ч больше скорости велосипедиста. Найдите скорость мотоциклиста.

    2. Скорость течения реки на 5 км/ч меньше собственной скорости моторной лодки. Найдите обе эти скорости, если 18 км по течению лодка проплывает на 1 час быстрее, чем 15 км против течения реки.

    3. Два трактора израсходовали 168 литров горючего, причем первый израсходовал в час на 1 литр меньше, чем второй, а работал на два часа больше. Сколько горючего в час расходовал каждый трактор, если они израсходовали горючего поровну?

    1. За одно и то же время пешеход прошел 5 км, а велосипедист проехал 15 км. Скорость велосипедиста на 12 км/ч больше скорости пешехода. С какой скоростью двигался велосипедист?

    2. Собственная скорость моторной лодки на 12 км/ч больше скорости течения реки. Найдите обе эти скорости, если 36 км против течению лодка проплывает на 1 час медленнее, чем 32 км по течению реки.

    3. Два ателье сшили 252 костюма. Первое ателье изготавливало в день на два костюма больше, чем второе, и затратило на всю работу на четыре дня меньше. Сколько костюмов в день изготавливало в день каждое ателье, если они сшили одинаковое количество костюмов?

    1. Весельная лодка за одно и то же время может проплыть 18 км по морю или 10 км – против течения реки. Найдите скорость лодки по течению реки, если скорость течения составляет 2 км/ч.

    2. Велосипедист проехал 30 км, а пешеход прошел 25 км. Скорость пешехода на 10 км/ч меньше скорости велосипедиста. Найдите скорости обоих, если известно, что пешеход был в пути на 3 часа дольше, чем велосипедист.

    3. Грузчики планировали за некоторое время разгрузить 200 ящиков. Однако они справились с работой на час раньше срока, так как разгружали в час на 10 ящиков больше, чем планировали раньше. Сколько ящиков в час они разгружали на самом деле?

    1. Моторная лодка за одно и то же время может проплыть 18 км по морю или 20 км – по течению реки. Найдите скорость лодки против течения реки, если скорость течения составляет 2 км/ч.

    2. Спортсмен-бегун пробежал дистанцию в 16 км на час быстрее, чем велосипедист проехал 24 км. Найдите скорости обоих, если известно, что скорость бегуна на 16 км/ч меньше скорости велосипедиста.

    3. Машинистка должна была напечатать за определенное время 160 страниц. Печатая в день на 4 страницы больше, чем планировала, она завершила работу на два дня раньше срока. Сколько страниц в день печатала на самом деле машинистка?

    1. За одно и то же время пешеход прошел 6 км, а велосипедист проехал 18 км. Скорость пешехода на 10 км/ч меньше скорости велосипедиста. Найдите скорость велосипедиста.

    2. Скорость течения реки на 2,5 км/ч меньше собственной скорости весельной лодки. Найдите обе эти скорости, если 27 км по морю лодка проплывает на 2 часа медленнее, чем 26 км по течению реки.

    3. Два трактора израсходовали 144 литра горючего, причем первый израсходовал в час на 1 литр меньше, чем второй, а работал на час больше. Сколько горючего в час расходовал каждый трактор, если они израсходовали горючего поровну?

    1. За одно и то же время бегун пробежал 1 км, а велосипедист проехал 3 км. Скорость бегуна на 16 км/ч меньше скорости велосипедиста. С какой скоростью двигался велосипедист?

    2. Скорость моторной лодки на 16 км/ч больше скорости течения реки. Найдите обе эти скорости, если 27 км по морю лодка проплывает на час быстрее, чем 40 км против течения реки.

    3. Два ателье сшили 180 костюмов. Первое ателье изготавливало в день на один костюм больше, чем второе, и затратило на всю работу на три дня меньше. Сколько костюмов в день изготавливало в день каждое ателье, если они сшили одинаковое количество костюмов?

    СР по решению задач составлением дробного рационального уравнения

    📸 Видео

    Дробно-рациональные уравнения. 8 класс.Скачать

    Дробно-рациональные уравнения. 8 класс.

    Решение задач с помощью рациональных уравнений. Видеоурок 20. Алгебра 8 классСкачать

    Решение задач с помощью рациональных уравнений. Видеоурок 20. Алгебра 8 класс

    Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать

    Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

    Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать

    Решение задач с помощью рациональных уравнений. Алгебра, 8 класс

    Как решать дробно-рациональные уравнения? | МатематикаСкачать

    Как решать дробно-рациональные уравнения? | Математика

    Уравнения и задачи с одной неизвестной. Тема.6 Решение задач составлением уравнений.Скачать

    Уравнения и задачи с одной неизвестной. Тема.6 Решение задач составлением уравнений.

    Алгебра 8. Урок 13 - Задачи на составление дробно-рациональных уравнений (Часть 2)Скачать

    Алгебра 8. Урок 13 - Задачи на составление дробно-рациональных уравнений (Часть 2)

    Алгебра 8. Урок 15 - Задачи на составление дробно-рациональных уравнений (Часть 4)Скачать

    Алгебра 8. Урок 15 - Задачи на составление дробно-рациональных уравнений (Часть 4)

    Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать

    Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.

    8 класс, 28 урок, Рациональные уравнения как математические модели реальных ситуацийСкачать

    8 класс, 28 урок, Рациональные уравнения как математические модели реальных ситуаций

    Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать

    Решение задач с помощью квадратных уравнений. Алгебра, 8 класс

    Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

    Алгебра 8. Урок 11 - Дробно-рациональные уравнения

    Алгебра 8 класс (Урок№32 - Решение задач с помощью рациональных уравнений.)Скачать

    Алгебра 8 класс (Урок№32 - Решение задач с помощью рациональных уравнений.)

    Алгебра 8. Урок 14 - Задачи на составление дробно-рациональных уравнений (Часть 3)Скачать

    Алгебра 8. Урок 14 - Задачи на составление дробно-рациональных уравнений (Часть 3)

    Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

    Решение дробных рациональных уравнений. Алгебра, 8 класс

    Алгебра 8 класс (Урок№29 - Решение задач с помощью квадратных уравнений.)Скачать

    Алгебра 8 класс (Урок№29 - Решение задач с помощью квадратных уравнений.)

    Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать

    Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.
    Поделиться или сохранить к себе: