Решение задач с помощью уравнений 7 класс тренажер с ответами

Тренажеры по алгебре на тему «Задачи на составление систем уравнений» (7 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 2 500 дидактических материалов для школьного и домашнего обучения

Тренажер Задачи на составление с/у.

1.Сумма двух чисел равна 131, а их разность -41. Найдите эти числа.

2. У Ивана 25 монет по 25 копеек и по 10 копеек, всего на сумму 1 руб. 50 коп.(1руб=100коп). Сколько 5-копеечных и сколько 10-копеечных монет у Ивана?

3. Брат и сестра, работая летом на почте, заработали 230 руб.Брат заработал на 40 руб больше сестры. Сколько заработал каждый?

4. Николай на выполнение домашней работы по математике затратил на 30 мин больше, чем по географии. Всего на эти два предмета у него ушло 1ч.40мин. Сколько времени потребовалось на каждый предмет?

5. Андрей старше Олега на 4 года, а Олег старше Бориса в 1,5 раза. Вместе им 36 лет. Сколько лет каждому из них?

6. У причала находилось 6 лодок, часть из которых была двухместными, а часть трехместными. Всего в эти лодки может поместиться 14 человек. Сколько двухместных и сколько трехместных лодок было у причала?

7. На одно платье и 3 сарафана пошло 9м ткани, а на 3 таких же платья и 5 таких же сарафанов -19м ткани. Сколько ткани потребуется на одно платье и сколько на один сарафан?

8. Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы – 35 кг сена. Сколько сена выдают ежедневно одной лошади и сколько одной корове?

9. Два пешехода вышли одновременно навстречу друг другу из двух поселков и встретились через 3 часа. Расстояние между поселками 30 км. Найдите скорость каждого пешехода, если у одного она на 2 км/ч меньше, чем у другого.

10.В городской думе заседало 60 депутатов, представляющие две партии. После выборов число депутатов от первой партии увеличилось на 12%, а от второй партии – уменьшилось на 20%. Сколько депутатов от каждой партии оказалось в городской думе после выборов, если всего было выбрано 56 депутатов?

11, Школьная баскетбольная команда в двух играх заработала 95 очков. Если удвоить количество очков, полученных в первой игре, то это на 5 меньше, чем количество очков, полученных во второй игре. Сколько очков заработала каждая команда в каждой игре?

12. Мотоциклист ехал 3 ч. По проселочной дороге и 0,5ч. По шоссе, всего он проехал 110км. Скорость мотоциклиста по шоссе была на 10 км/ч больше, чем по проселочной дороге. С какой скоростью ехал мотоциклист по шоссе, а с какой – по проселочной дороге?

13. В зале расставили одинаковыми рядами 48 стульев. Рядов оказалось на 8 больше, чем стульев в каждом ряду. Сколько стульев в каждом ряду и сколько рядов в зале?

14. Все имеющиеся яблоки можно разложить в 6 пакетов или в 4 коробки. Сколько кг яблок имеется, если в пакет помещается на 1 кг яблок меньше, чем в коробку?

15. Двое рабочих изготовили по одинаковому количеству деталей. Первый выполнил эту работу за 5ч, а второй за 4ч, так как изготовлял в час на 12 деталей больше первого. Сколько деталей изготовил каждый рабочий?

16. Во время путешествия Николай проделал путь в 1100 км на самолете и на автобусе. На автобусе он пролетел расстояние в 4,5 раза большее, чем проехал на автобусе. Какое расстояние Николай пролетел на самолете?

Видео:Решение задач с помощью уравнений. Алгебра, 7 классСкачать

Решение задач с помощью уравнений. Алгебра, 7 класс

Решение задач с помощью уравнений

Тема урока: § 6. Решение задач с помощью уравнений. Приведены все необходимые и достаточные сведения для решения текстовых задач с помощью составления уравнений.

Видео:Решение задач с помощью уравнений. Алгебра 7 классСкачать

Решение задач с помощью уравнений. Алгебра 7 класс

Введение

В школьной математике есть целый кладезь текстовых задач, которые решаются универсальным методом построения уравнения (модели) исходя из условия.

Сам факт того, что огромное количество самых разнообразных задач поддаются решению с помощью составления линейного уравнения, говорит нам, что метод решений является действительно универсальным.

Обычно условия задач удается перевести на математический язык. Полученное уравнение — это следствие перевода нашего условия с русского языка на язык алгебры. Зачастую фактической стороной повествования задачи является описание реальной ситуации, какого либо процесса, события.

Чтобы получить ответ — уравнение нужно решить, полученный корень уравнения будет являться решением, разумеется необходимо еще проверить, не является ли результат противоречивым относительно условия.

Видео:АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать

АЛГЕБРА 7 класс : Решение задач с помощью уравнений | Видеоурок

Алгоритм решения текстовых задач с помощью уравнений

Для решения задачи с помощью уравнения делают следующие действия:

  1. Обозначают некоторое неизвестное буквой и, пользуясь условием, составляют уравнение.
  2. Решают уравнение.
  3. Истолковывают результат.

Видео:Решение задач с помощью уравнений | Алгебра 7 класс #19 | ИнфоурокСкачать

Решение задач с помощью уравнений | Алгебра 7 класс #19 | Инфоурок

Примеры решений

Задача 1.
В мешке было в 3 раза меньше монет, чем в сундуке. После того как из мешка переложили 24 монеты, в сундуке их стало в 7 раз больше, чем в мешке. Сколько было монет в мешке и сколько в сундуке?

Пусть $x$ — количество монет в мешке, а значит в сундуке: $3x$ монет. После того, как из мешка переложили $24$ монеты, в сундуке стало: $3x+24$, а в мешке $x-24$. И если в сундуке их стало в $7$ раз больше чем в мешке, то имеем: $3x+24=7(x-24)$.

Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно $x$ и записать ответ.

Решим полученное уравнение: $3x+24=7(x-24)$. Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)

Раскроем скобки в правой части уравнения: $3x+24=7x-7cdot 24$. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит $x$ в левую, получим: $24+7cdot 24=7x-3x$. После упрощения получили $192=4x$, разделим обе части уравнения на коэффициент при неизвестном, т.е на $4$, тогда получим $x=48$.

Осталось истолковать ответ.
За переменную $x$ мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е $3x$.

Монет в мешке: $48$

Монет в сундуке: $48cdot 3=144$

Задача 2.
Купили 3600 кг муки и высыпали её в три мешка. В первый мешок муки вошло в 3 раза больше, чем во второй, а в третий мешок насыпали 800 кг муки. Сколько муки насыпали в первый и сколько во второй мешок?

Пусть в первый мешок насыпали $3x$ кг муки, тогда во второй мешок насыпали $x$ кг. Если сложим количество кг в каждом мешке, то получим $3600$ кг муки. Имеем: $3x+x+800=3600$, решим уравнение классическим методом.

Все слагаемые содержащие $x$ оставим слева, а всё остальное перенесём в правую часть равенства: $3x+x=3600-800$, упростим обе части; $4x=2800$ поделим обе части равенства на $4$ и получим ответ: $x=700$.

Ответ.
За переменную $x$ мы обозначали количество муки во втором мешке, по условию в первом в три раза больше.

Муки в первом мешке: $700cdot 3=2100$ кг.

Муки во втором мешке: $700$ кг.

Задача 3.
В первом мешке в 4 раза больше картофеля, чем во втором. После того, как из одного мешка взяли 40 кг картофеля, а во второй насыпали ещё 5 кг, в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.

Пусть во втором мешке $x$ кг картофеля, тогда в первом мешке $4x$ кг. Из первого взяли $40$ кг, тогда в первом стало: $4x-40$. Во второй мешок насыпали $5$ кг и теперь в нём: $x+5$ кг картошки. Нам известно, что после этих изменений количество картофеля в мешках стало поровну, запишем это с помощью линейного уравнения:

Решим это линейное уравнение. Все слагаемые содержащие переменную перенесём влево, а свободные члены вправо и получим:

Избавимся от коэффициента при неизвестном и получим ответ:

Ответ.
За переменную $x$ мы обозначали количество кг картошки во втором мешке, по условию в первом в четыре раза больше.

Картошки в первом мешке: $15cdot 4=60$ кг.

Картошки во втором мешке: $15$ кг.

Задача 4.
По шоссе едут две машины с одной и той же скоростью. Если первая увеличит скорость на 20 км/ч, а вторая уменьшит скорость на 20 км/ч, то первая за 2 часа пройдёт то же самое расстояние, что и вторая за 4 часа. Найдите первоначальную скорость машин.

Пусть машины едут со скоростью $v$ км/ч, тогда после ускорения первой машины её скорость стала: $v+20$ км/ч, а скорость второй машины после замедления стала: $v-20$ км/ч. Нам известно по условию, что после изменения скоростей машин, первая проходит за два часа ровно столько, сколько вторая за четыре, тогда имеем:

По известной нам формуле $S=vt$ ($S$ — расстояние, $v$ — скорость, $t$ — время)

Сократим обе части равенства на $2$, тогда получим: $v+20=2(v-20)$. Раскроем скобки в правой части уравнения и сгруппируем все переменные в правой части равенства.

Ответ.
В качестве неизвестной величины в задаче мы взяли $v$ (первоначальную скорость машин).

Первоначальная скорость машин: $v=60$ км/ч.

Задача 5.
В первую бригаду привезли раствора цемента на 50 кг меньше, чем во вторую. Каждый час работы первая бригада расходовала 150 кг раствора, а вторая – 200кг. Через 3 ч работы в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Сколько раствора привезли в каждую бригаду?

Пусть во вторую бригаду привезли $x$ кг раствора цемента, тогда в первую бригаду привезли $x-50$ кг. Через 3 часа работы у первой бригады осталось $x-50-3cdot 150$ кг цемента, а у второй $x-3cdot 200$ кг.

По условию известно, что через 3 часа работы в первой бригаде осталось в 1,5 раза больше цемента, чем во второй, тогда имеем:

$$x-50-3cdot 150=1,5(x-3cdot 200)$$

Осталось решить данное уравнение относительно $x$ и истолковать ответ.

Упростим и раскроем скобки в правой части, тогда получим:

Если вам неудобно работать с десятичными дробями, то вы всегда можете их переводить в рациональный вид: $1,5=frac=frac$.

Запишем с учётом перевода дробей и упростим:

Перенесём слагаемые содержащие переменную в правую сторону, а всё остальное в левую:

Домножим обе части на 2 и получим ответ:

Ответ.
В качестве переменной в задаче мы взяли $x$ (кол-во кг цемента который привезли во вторую бригаду), по условию в первую привезли на 50 кг меньше, а значит $x-50$

Кол-во цемента в первой бригаде: $800-50=750$ кг.

Кол-во цемента во второй бригаде: $800$ кг.

Видео:Решение задач с помощью уравнений.Скачать

Решение задач с помощью уравнений.

Задачи для самостоятельного решения

По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?

Пусть работники отработали $n$ дней, тогда $30-n$ дней они не отработали.

В итоге мы понимаем, что за $n$ рабочих дней они зарабатывают $48n$ франков и с них вычитается за $30-n$ не отработанных дней по $12(30-n)$ франков. Тогда ясно, что: $48n-12(30-n)=0$

Ответ: Рабочие отработали 6 дней.

Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?

Пусть целый кирпич весит весит $k$ фунтов, тогда имеем:

1 фунт и половина кирпича = целый кирпич.

Бутылка с пробкой стоит 10 копеек, причем бутылка на 9 копеек дороже пробки. Сколько стоит бутылка без пробки?

Пусть бутылка стоит $b$ копеек, а пробка $p$ копеек, тогда:

$b+p=10$ и $b=p+9$, подставив значение $b$ в первое равенство — получим:

Т.е пробка стоит пол копейки, тогда бутылка $9,5$ копеек.

Ответ: 9,5 копеек стоит бутыка без пробки.

На свитер, шапку и шарф израсходовали 555 г шерсти, причем на шапку ушло в 5 раз меньше шерсти, чем на свитер, и на 5 г больше, чем на шарф. Сколько шерсти израсходовали на каждое изделие?

Пусть на свитер потратили $5x$ г шерсти, тогда на шапку ушло $x$ г и на шарф потребовалось $x-5$ г, имеем:

Ответ: На шапку ушло $80$ г, на свитер $5cdot 80=400$ г, на шарф $80-5=75$ г.

Три пионерских звена собрали для школьной библиотеки 65 книг. Первое звено собрало на 10 книг меньше, чем второе, а третье — 30% того числа книг, которое собрали первое и второе звено вместе. Сколько книг собрало каждое звено?

Пусть второе звено собрало $x$ книг, тогда первое собрало $x-10$ книг, а третье $0,3(2x-10)$, имеем:

$$2x-10+0,3cdot 2x-0,3cdot 10=65$$

$$2x+0,3cdot 2x=65+10+0,3cdot 10$$

Ответ: Первое звено собрало $30-10=20$ книг, второе $30$ книг, третье $0,3(60-10)=15$ книг.

Видео:Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСССкачать

Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСС

Тренажер по алгебре «Решение уравнений» (7 класс)
тренажёр по алгебре (7 класс)

Решение задач с помощью уравнений 7 класс тренажер с ответами

Файл содержит материалы для уроков алгебры в 7 классе по теме»Решение уравнений»

Видео:Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать

Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)

Скачать:

ВложениеРазмер
trenazher_reshenie_uravneniy_7_klass_-_.docx23.82 КБ

Видео:РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 класс

Предварительный просмотр:

Тренажер «Решение уравнений». Вариант 1. Фамилия Имя ______________________________________

6) 1,3 х – 0,5 = 3,7 + х

11) (–20 х – 50) · 2 = 100

7) 2,2 х + 2,6 = 2 х + 1

12) х – 32 = ( х + 8) · (–7)

8) 1,5 х + 24 = х – 16

13) 3 (5 – х ) + 13 = 4 (3 х – 8)

Тренажер «Решение уравнений». Вариант 2. Фамилия Имя ______________________________________

  1. 10 + 2 х = 90 + х
  1. 4 – х = 1 + 4 х
  1. 46 + 16 х = х – 54

6) 10 + 0,2 х = 90 + х

11) 4 (1 – 0,5 х ) = –2 (3 + 2 х )

7) 4 х – 0,6 = 0,6 + х

12) – 3 (2 – 15 х ) = –6

8) х – 8 = 2,4 х – 15

13) 4 (3 – х ) – 11 = 7 (2 х – 5)

9) 0,6 х – 1,5 = 8,5 – 0,4 х

14) 5 ( х + 1,2) = 6,5 х

10) 7,4 – х – 2 х – 3 х = х – 5,2

15) 0,2 (5 х – 2) = 0,3 (2 х – 1) – 0,9

  1. 24 – х = 12 + х
  1. 9 х + 1 = 2 х – 6
  1. 6 х – 150 = 85 + х
  1. 57 + х = 101 – х
  1. 6 х – 12 = 4 х – 8

9) 5,7 + 2 х = 10,1 – 2 х

14) 5 ( х + 1,2) = 34 х + 0,2

10) 6,2 х – 1 = 3 х – 1 + х

15) (5 х – 1) · 1,6 = 1,8 х – 4,7

Тренажер «Решение уравнений». Вариант 3. Фамилия Имя ______________________________________

  1. 27 + 5 х = х – 81
  1. х – 47 = 2 х – 94

6) 0,4 – х = 0,1 + 4 х

11) – 5 (3х + 1) – 11 = – 16

7) 0,9 х + 1 = 0,2 х – 6

12) 12 (3 х + 5) = 2 (24 х – 36)

8) 4,6 + 0,6 х = х – 5,4

13) 32 (5 х – 1) = 36 х – 94

Тренажер «Решение уравнений». Вариант 4. Фамилия Имя ______________________________________

  1. 3 х + 8 = 2
  1. 2 х – 5 = 15 – 2 х
  1. х + 8 = 24 х – 15

11) 2 (6 х – 8) = 5 (3 х + 7)

12) 7 (7 х + 9) – 138 = 50 х

8) 4,8 х – 5 = 2,8 х + 9

13) 4 (3 – 2 х ) + 24 = 2 (3 + 2 х )

9) 3,1 – х = 0,1 х – 9

14) 4 (1,2 х + 3,7) – 2,8 = 5,2 х

10) х – 51 – 43 = 2 х – 94 – х

15) 0,3 (5 х – 7) = 3 (0,2 х + 3,2)

  1. 4 х – 9 = 9 + х
  1. 3 х – 5 = 47 + х
  1. 17 – х = х – 9
  1. х + 19 = х – 41
  1. 76 – х = х – 52

9) 2 х – 37 = 0,7 х – 63

14) 0,7 (6 х – 5) = 0,4 ( х – 4)

10) 2,7 + 5 х = х – 8,1 – х

15) 0,9 (4 х – 2) = 0,5 (3 х – 4) + 4,4

Видео:решение уравнений РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ 7 классСкачать

решение уравнений РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ 7 класс

По теме: методические разработки, презентации и конспекты

Тренажер по теме «Уравнение» 5 класс

Данный тренажер составлен в помощь учителям, работающим по учебнику «Математика 5» под редакцией И. И. Зубаревой и А.Г. Мордковича.

Решение задач с помощью уравнений 7 класс тренажер с ответами

Тренажер по теме «Уравнение касательной»

Материал содержит подборку заданий для организации самостоятельной работы учащихся, а так же небольшую проверочную работу по теме.

Решение задач с помощью уравнений 7 класс тренажер с ответами

Тренажер по логарифмическим уравнениям.

Данный материал будет полезен для закрепления навыков по теме Логарифмические уравнения.

Решение задач с помощью уравнений 7 класс тренажер с ответами

Тренажер по линейным уравнениям

Задания по теме «Линейные уравнения» и рисунок, выполненный в Excel.

Решение задач с помощью уравнений 7 класс тренажер с ответами

Тренажер по квадратным уравнениям

Решить квадратные уравнения и рисунок в Excel.

Тренажер по алгебре ,8 класс ,по теме «Квадратные уравнения»

Тренажер по алгебре ,8 класс, по темам :Решение неполных квадратных уравнений .Решение квадратных уравнений.Применение теоремы Виета при решении квадратных уравнений.

📸 Видео

Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью квадратных уравнений. Алгебра, 8 класс

Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать

Решение задач с помощью уравнений. Видеоурок 29. Математика 6 класс

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ решение уравнений 7 МакарычевСкачать

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ решение уравнений 7 Макарычев

7 класс - Алгебра - Решение задач с помощью уравненийСкачать

7 класс - Алгебра - Решение задач с помощью уравнений

Девятиклассники впервые прошли собеседованиеСкачать

Девятиклассники впервые прошли собеседование

Как проверяют учеников перед ЕНТСкачать

Как проверяют учеников перед ЕНТ

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. Видеоурок | АЛГЕБРА 7 классСкачать

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. Видеоурок | АЛГЕБРА 7 класс

Решение задач с помощью уравненийСкачать

Решение задач с помощью уравнений

Составь уравнение из текстовой задачи! Алгебра 7 класс.Скачать

Составь уравнение из текстовой задачи! Алгебра 7 класс.

А ты решишь задачу 7 класса? | Математика | TutorOnlineСкачать

А ты решишь задачу 7 класса? | Математика | TutorOnline
Поделиться или сохранить к себе:
  1. 7 х – 37 = 33 х – 63
  1. х + 25 = 2 х + 100