Продолжаем изучать элементарные задачи по математике. Данный урок посвящен задачам на дроби.
Прежде чем решать задачи на дроби, необходимо досконально изучить все темы, касающиеся дробей. Ниже приведен список уроков, которые можно повторить.
Каждая задача, приведенная в данном уроке, относится к категории элементарных. Если какая-то задача непонятна, это указывает на то, что предыдущий материал усвоен недостаточно хорошо.
- Задачи на дроби
- Задачи для самостоятельного решения
- 30 thoughts on “Задачи на дроби”
- Решение задач уравнением. Задачи по математике для 5 класса.
- Задача 1
- Задача 2
- Задача 3
- Задача 4
- Задача 5
- Задача 6
- Задача 7
- Задача 8
- Задача 9
- Задача 10
- Задача 11
- Задача 12
- Презентация «Решение уравнений и задач по теме «Обыкновенные дроби»» (урок-сказка «Спасение похищенных чисел») презентация к уроку по математике (5 класс) на тему
- Презентация «Решение уравнений и задач по теме «Обыкновенные дроби»»
- (урок-сказка «Спасение похищенных чисел»)
- Скачать:
- Предварительный просмотр:
- Подписи к слайдам:
- 🔥 Видео
Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать

Задачи на дроби
Задача 1. В классе 
Решение
Если 
Задача 2. В классе школьников составляют отличники, 

Задача 3. В классе 24 школьника. школьников составляют отличники, 

Решение
24 : 6 × 1 = 4 × 1 = 4 (отличника)
24 : 6 × 3 = 4 × 3 = 12 (хорошистов)
24 : 6 × 2 = 4 × 2 = 8 (троечников)
Проверка
4 + 12 + 8 = 24 (школьника)
Задача 4. В классе школьников составляют отличники, 
Решение
Школьники разделены на 6 частей. На одну из частей приходятся отличники, на три части — хорошисты. Нетрудно догадаться, что на остальные две части приходятся троечники. Значит 
Не приводя рисунков можно сложить дроби и 

Задача 5. В классе 16 школьников. Из них 

Решение
16 : 4 × 1 = 4 × 1 = 4 (отличника)
16 : 16 × 12 = 1 × 12 = 12 (хорошистов)
Задача 6. В классе 16 школьников. Из них 


Решение
16 : 8 × 1 = 2 × 1 = 2 (отличника)
16 : 16 × 10 = 1 × 10 = 10 (хорошистов)
16 : 4 = 4 (троечника)
Задача 7. Из зерен пшеницы производят полтавскую крупу, масса которой составляет 
Решение
Найдем 
Теперь найдем массу кормовых отходов. Для этого вычтем из 500 ц массу полтавской крупы:
Значит из 500 центнеров зерен пшеницы можно получить 320 центнеров полтавской крупы и 180 центнеров кормовых отходов.
Задача 8. Килограмм сахара стоит 88 рублей. Сколько стоит 



Решение
1) 
44 × 1 = 44 рубля
2) 

22 × 1 = 22 рубля
3) Дробь 


4) Дробь 
Одиннадцать восьмых это один целый килограмм и 


Стоимость 

Но выделив целую часть можно хорошо понять, как сформировалась цена на 
Задача 9. Финики содержат 

Решение
Узнаем сколько граммов сахара содержится в одном килограмме фиников. Один килограмм это тысяча грамм. Найдем 
В одном килограмме фиников содержится 720 грамм сахара. Чтобы узнать сколько грамм сахара содержится в четырех килограммах, нужно 720 умножить на 4
Теперь узнаем сколько минеральных солей содержится в 4 килограммах фиников. Но сначала узнаем сколько минеральных солей содержится в одном килограмме. Один килограмм это тысяча грамм. Найдем 
В одном килограмме фиников содержится 15 грамм минеральных солей. Чтобы узнать сколько грамм минеральных солей содержится в четырех килограммах, нужно 15 умножить на 4
Значит в 4 кг фиников содержится 2880 грамм сахара и 60 грамм минеральных солей.
Решение для данной задачи можно записать значительно короче, двумя выражениями:
Суть в том, что от 4 килограмм нашли 

Задача 10. Поезд прошел 840 км, что составляет 
Решение
В задаче говорится, что 840 км это 

А поскольку весь путь состоит из семи частей, то расстояние всего пути можно найти, умножив 210 на 7:
210 × 7 = 1470 км.
Теперь ответим на второй вопрос задачи — какое расстояние осталось пройти поезду? Если длина пути 1470 км, а пройдено 840, то оставшийся путь равен 1470−840, то есть 630
Задача 11. Одна из групп, покорившая горную вершину Эверест, состояла из спортсменов, проводников и носильщиков. Спортсменов в группе было 25, число проводников составляло 
Решение
Спортсменов группе 25. Проводников составляет 

Спортсменов и проводников вместе — 45 человек. Это число составляет 

45 : 9 × 140 = 5 × 140 = 700
Задача 12. В школу привезли 900 новых учебников, из них учебники по математике составляли 

Узнаем сколько составляют учебники по математике:
900 : 25 × 8 = 288 (книг по математике)
Узнаем сколько учебников по русскому языку:
900 : 100 × 33 = 297 (книг по русскому языку)
Узнаем сколько учебников по литературе. Для этого из общего числа книг вычтем учебники по математике и по русскому:
900 – (288+297) = 900 – 585 = 315
Проверка
288 + 297 + 315 = 900
Задача 13. В первый день продали 

Решение
За два дня продали 

Можно представить поступивший в магазин виноград в виде шести гроздей. Тогда 


Задача 14. Вера в первый день прочитала 
Решение
Определим часть книги, прочитанной во второй день. Сказано, что во второй день прочитано на меньше, чем в первый день. Поэтому из 
Во второй день Вера прочитала 
За два дня Вера прочитала 

Сделаем проверку. Предположим что книга, которую читала Вера, имела 180 страниц. В первый день она прочла 

180 : 9 × 5 = 100 (страниц)
Во второй день Вера прочитала на меньше, чем в первый. Найдем от 180 страниц, и вычтем полученный результат из 100 листов, прочитанных в первый день
180 : 6 × 1 = 30 × 1 = 30 (страниц)
100 − 30 = 70 (страниц во второй день)
Проверим, являются ли 70 страниц 
180 : 18 × 7 = 10 × 7 = 70 (страниц)
Теперь ответим на второй вопрос задачи — успела ли Вера прочитать все 180 страниц за два дня. Ответ — не успела, поскольку за два дня она прочла только 170 страниц
100 + 70 = 170 (страниц)
Осталось прочесть еще 10 страниц. В задаче в роли остатка у нас была дробь 

180 : 18 × 1 = 10 × 1 = 10 (страниц)
Задача 15. В одном пакете 

Решение
Определим массу второго пакета. Она на 
Масса второго пакета 
Масса обоих пакетов 



1000 : 2 × 1 = 500 × 1 = 500 г
1000 : 5 × 1 = 200 × 1 = 200 г
Во втором пакете на 200 граммов меньше, поэтому чтобы определить массу второго пакета, нужно из 500 г вычесть 200 г
500 − 200 = 300 г
Ну и напоследок сложить массы обоих пакетов:
500 + 300 = 800 г
Задача 16. Туристы прошли путь от турбазы до озера за 4 дня. В первый день они прошли 

Решение
В задаче сказано, что во второй день туристы прошли 



В третий и четвертый день туристы прошли 24 км и это составляет 

24 : 4 × 7 = 6 × 7 = 42 км
Во второй, третий и четвертый день туристы прошли 42 км. Теперь найдем 
42 : 7 × 3 = 6 × 3 = 18 км
Теперь возвращаемся к началу задачи. Сказано, что в первый день туристы прошли 
Зная, что пути составляют 42 километра, мы можем найти длину всего пути:
42 : 3 × 4 = 56 км
Значит длина пути от турбазы до озера составляет 56 километров. Сделаем проверку. Для этого сложим все пути, пройденные туристами в каждый из четырех дней.
Сначала найдем путь пройденный в первый день:
56 : 4 × 1 = 14 (в первый день)
14 + 18 + 12 + 12 = 56
Задача из арифметики известного среднеазиатского математика Мухаммеда ибн-Мусы ал-Хорезми (IX век н. э.)
«Найти число, зная, что если отнять от него одну треть и одну четверть, то получится 10»
Изобразим число, которое мы хотим найти, в виде отрезка, разделенного на три части. В первой части отрезка отметим треть, во второй — четверть, оставшаяся третья часть будет изображать число 10.
Сложим треть и четверть:
Теперь изобразим отрезок, разделенный на 12 частей. Отметим на нем дробь 
Зная, что пять двенадцатых числа составляют число 10, мы можем найти всё число:
10 : 5 × 12 = 2 × 12 = 24
Мы нашли всё число — оно равно 24.
Эту задачу можно решить не приводя рисунков. Для этого, сначала нужно сложить треть и четверть. Затем из единицы, которая играет роль неизвестного числа, вычесть результат сложения трети и четверти. Затем по полученной дроби определить всё число:
Задача 17. Семья, состоящая из четырех человек, в месяц зарабатывает 80 тысяч рублей. Бюджет распланирован следующим образом: 






Решение
80 : 40 × 7 = 14 (тыс. на еду)
80 : 20 × 1 = 4 × 1 = 4 тыс. (на коммунальные услуги)
80 : 20 × 1 = 4 × 1 = 4 тыс. (на Интернет и ТВ)
80 : 20 × 3 = 4 × 3 = 12 тыс. (на лечение и походы по врачам)
80 : 10 × 1 = 8 × 1 = 8 тыс. (на пожертвование в детский дом)
80 : 20 × 3 = 4 × 3 = 12 тыс. (на проживание в съемной квартире)
80 : 40 × 13 = 2 × 13 = 26 тыс. (в копилку)
Проверка
14 + 4 + 4 + 12 + 8 + 12 + 26 = 80
Задача 18. Туристы во время похода за первый час прошли 

Решение
Найдем числа по дробям. 

Определим длину пути, пройденного туристами за второй час. Для этого к 3 км 700 м нужно прибавить 1 км 200 м
3 км 700 м + 1 км 200 м = 3700м + 1200м = 4900м = 4 км 900 м
Определим длину пути, пройденного туристами за два часа:
3 км 700 м + 4 км 900 = 3700м + 4900м = 8600м = 8 км 600 м
Значит за два часа туристы прошли 8 километров и еще 600 метров. Решим эту задачу с помощью дробей. Так её можно значительно укоротить
Получили ответ 
Задача 19. Геологи прошли долину, расположенную между горами, за три дня. В первый день они прошли 

Решение
Изобразим путь в виде отрезка, разделенного на три части. В первой части отметим 

Сложим части пути, пройденные в первый и во второй день:
За первый и второй дни геологи прошли 


28 : 4 × 9 = 7 × 9 = 63 км
Проверка
63 : 9 × 5 = 7 × 5 = 35
63 : 9 × 4 = 7 × 4 = 28
Задача 20. Для приготовления крема использовали сливки, сметану и сахарную пудру. Сметану и сливки составляют 844,76 кг, а сахарная пудра и сливки 739,1 кг. Сколько в отдельности сливок, сметаны и сахарной пудры содержится в 1020,85 кг крема?
Решение
сметана и сливки — 844,76 кг
сахарная пудра и сливки — 739,1 кг
Вытащим из 1020,85 кг крема сметану и сливки (844,76 кг). Так мы найдем массу сахарной пудры:
1020,85 кг — 844,76 кг = 176,09 (кг сахарной пудры)
Вытащим из сахарной пудры и сливок сахарную пудру (176,09 кг). Так мы найдем массу сливок:
739,1 кг — 176,09 кг = 563,01 (кг сливок)
Вытащим сливки из сметаны и сливок. Так мы найдем массу сметаны:
844,76 кг — 563,01 кг = 281,75 (кг сметаны)
176,09 (кг сахарная пудра)
563,01 (кг сливки)
281,75 (кг сметана)
Проверка
176,09 кг + 563,01 кг + 281,75 кг = 1020,85 кг
1020,85 кг = 1020,85 кг
Задача 21. Масса бидона, заполненного молоком равна 34 кг. Масса бидона, заполненного наполовину, равна 17,75 кг. Какова масса пустого бидона?
Решение
Вычтем из массы бидона, заполненного молоком, массу бидона заполненного наполовину. Так мы получим массу содержимого бидона, заполненного наполовину, но уже без учета массы бидона:
34 кг − 17,75 кг = 16,25 кг
16,25 это масса содержимого бидона заполненного наполовину. Умножим эту массу на 2, получим массу бидона заполненного полностью:
16,25 кг × 2 = 32,5 кг
32,5 кг это масса содержимого бидона. Чтобы вычислить массу пустого бидона, нужно из 34 кг вычесть массу его содержимого, то есть 32,5 кг
34 кг − 32,5 кг = 1,5 кг
Ответ: масса пустого бидона составляет 1,5 кг.
Задача 22. Сливки составляют 0,1 массы молока, а сливочное масло составляет 0,3 массы сливок. Сколько сливочного масла можно получить из суточного надоя коровы, равного 15 кг молока?
Решение
Определим сколько килограмм сливок можно получить с 15 кг молока. Для этого найдем 0,1 часть от 15 кг.
15 × 0,1 = 1,5 (кг сливок)
Теперь определим сколько сливочного масла можно получить с 1,5 кг сливок. Для этого найдем 0,3 часть от 1,5 кг
1,5 кг × 0,3 = 0,45 (кг сливочного масла)
Ответ: из 15 кг молока можно получить 0,45 кг сливочного масла.
Задача 23. 100 кг клея для линолеума содержат 55 кг асфальта, 15 кг канифоли, 5 кг олифы и 25 кг бензина. Какую часть этого клея образует каждая из его составляющих?
Решение
Представим, что 100 кг клея как 100 частей. Тогда на 55 частей приходится асфальт, на 15 частей — канифоль, на 5 частей — олифа, на 25 частей — бензин. Запишем эти части в виде дробей, и по возможности сократим получающиеся дроби:
Ответ: 



Видео:Математика 5 Обыкновенные дроби Основные задачи на дробиСкачать

Задачи для самостоятельного решения
Решение
Ответ: масса двух пакетов вместе составляет 1 кг 300 г
Решение
Второй способ
Ответ: театральное представление длилось 2 часа 10 минут.
Решение
Определим часть пути, пройденного лыжником за два часа движения. Для этого сложим дроби, выражающие пути пройденные за первый и второй час:
Определим часть пути, пройденного лыжником за третий час. Для этого из всех частей вычтем часть пути, пройденного за первый и второй час движения:
Ответ: в третий час лыжник прошел 
Решение
Определим часть школьников, которые участвовали в футболе, баскетболе и в прыжках:
Определим часть школьников, которые участвовали в беге:
Узнаем на какую часть бегунов больше (или меньше) чем футболистов. Для начала сравним дроби 
Требовалось узнать на какую часть бегунов больше (или меньше) чем футболистов. Мы выяснили, что бегунов меньше, чем футболистов. Выясним на какую часть их меньше:
Бегунов меньше, чем футболистов на 
Теперь узнаем на какую часть бегунов больше (или меньше) чем баскетболистов. Для начала сравним дроби 
Требовалось узнать на какую часть бегунов больше (или меньше) чем баскетболистов. Мы выяснили, что бегунов больше, чем баскетболистов. Выясним на какую часть их больше:
Бегунов больше, чем баскетболистов на часть.
Ответ: бегунов было на 
Задача 5. На выставке художественных работ представлена живопись, скульптура и графика. 

Решение
Сложим дроби, выражающие скульптуру и живопись:
Определим какую часть всех работ составляет графика:
Ответ: 
Задача 6. Рабочие отремонтировали дорогу длиной 820 м за три дня. Во вторник они отремонтировали 
Решение
Определим длину дороги, отремонтированной во вторник:
820 : 5 × 2 = 328 м
Определим длину дороги, отремонтированной в среду. Известно, что в этот день рабочие отремонтировали оставшейся дороги. Оставшаяся дорога это 820−328, то есть 492
492 : 3 × 2 = 328 м
Определим длину дороги, отремонтированной в четверг. Для этого вычтем из 820 длины дорог, отремонтированных во вторник и в среду:
820 − (328 + 328) = 820 − 656 = 164 м
Ответ: в четверг рабочие отремонтировали 164 метра дороги.
Задача 7. В книге три рассказа. Наташа прочла первый рассказ за 

Решение
Определим время за которое Наташа прочитала первый рассказ. Она прочила его за треть часа. Треть часа это 20 минут
60 : 3 × 1 = 20 минут
Определим время за которое Наташа прочитала второй рассказ. Она прочила его на ч больше. часа это 10 минут. Прибавим к 20 минутам 10 минут, получим время чтения второго рассказа:
20 + 10 = 30 минут
Определим время за которое Наташа прочитала третий рассказ. Она прочитала его на 

Определим сколько времени ушло у Наташи на чтение всей книги:
20 + 30 + 15 = 65 минут = 1 ч 5 минут
На чтение всей книги у Наташи ушел 1 час и 5 минут. Решим эту задачу с помощью дробей. Так ее можно значительно укоротить:


Ответ: на чтение всей книги у Наташи ушло
Задача 8. Из одной тонны хлопка-сырца можно изготовить 3400 м ткани, 1,05 ц пищевого масла и 0,225 т жмыха. Сколько метров ткани, пищевого масла и жмыха можно получить из 32,4 ц хлопка-сырца?
Решение
Переведем 32,4 ц в тонны. Одна тонна составляет 10 центнеров. Чтобы узнать сколько таких десять центнеров (имеется ввиду тонн) в 32,4 центнерах, нужно 32,4 разделить на 10
Определим сколько метров ткани можно получить с 3,24 тонн хлопка-сырца. С одной тонны, как указано в задаче, получается 3400 метров ткани. А с 3,24 тонн будет получено в 3,24 раза больше ткани
3400 × 3,24 = 11016 метров ткани.
Определим сколько пищевого масла можно получить с 3,24 тонн хлопка-сырца. С одной тонны, как указано в задаче, получается 1,05 ц пищевого масла. А с 3,24 тонн будет получено в 3,24 раза больше масла
1,05 × 3,24 = 3,402 центнера пищевого масла
Определим сколько жмыха можно получить с 3,24 тонн хлопка-сырца. С одной тонны, как указано в задаче, получается 0,225 т жмыха. А с 3,24 тонн будет получено в 3,24 раза больше жмыха
0,225 × 3,24 = 0,729 тонн жмыха
Ответ: из 32,4 ц хлопка сырца можно получить 11016 метров ткани, 3,402 ц пищевого масла и 0,729 т жмыха.
Решение
Зная, что 0,2 всего пути составляют 12 км, мы можем найти весь путь. Чтобы найти неизвестное число по десятичной дроби, нужно известное число разделить на десятичную дробь
Ответ: Туристы прошли 60 км.
Решение
Зная, что 0,7 книги составляют 56 страниц, мы можем узнать сколько всего страниц в книге. Чтобы найти неизвестное число по десятичной дроби, нужно известное число разделить на десятичную дробь
56 : 0,7 = 80 (страниц всего)
Узнаем сколько осталось прочитать
80 − 56 = 24 (страницы осталось прочитать)
Ответ: в книге 80 страниц. Прочитать осталось еще 24 страницы.
Решение
Разделим жилых домов на три части:
Теперь на треть многоэтажных домов приходится 
Чтобы узнать сколько многоэтажных домов приходится на две трети, умножим 
Ответ: жилые многоэтажные дома составляют 
Решение
Изобразим схематически один метр веревки:
Выделим на этом рисунке метра:
Здесь же выделим 
Не выделенным на м остался один кусочек. Узнаем, что это за кусочек. Для этого из вычтем
м это часть веревки, которую нужно отрезать. Тогда мы получим 
Теперь осталось узнать сколько раз м содержит м
Значит, чтобы не производя измерений от м веревки отрезать 
Ответ: чтобы от веревки, длина которой м отрезать 

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Видео:Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать

30 thoughts on “Задачи на дроби”
Здравствуйте! Очень благодарна вам за ваши труды. Очень все доступно объясняете.
В задаче №2 есть опечатка. В условии одна целая пять шестых часа, а в решении одна целая две трети.
Добавлю, что задача №2 в разделе самостоятельного решения.
Здравствуйте! Спасибо вам большое за задачи!
Но я никак не могу понять, почему в 16 задаче такое решение. Почему 3/7 оставшегося пути не вычисляются из 24км? Ведь второй день = 3/7 оставшегося пути, этот путь равен 24км. Он не может включать и второй день? Разве нет?
24 км это путь, пройденный в третий и четвертый дни. А во второй день было пройдено совсем другое расстояние.
Вообще, во второй, третий и четвертый дни всего было пройдено 42 км.
Найдите от 42 км сначала 3/7 пути, а потом 4/7 пути. Сразу станет всё понятно 😉
А откуда в 3-й задаче взялась дробь 15 на 15?
Видео:Уравнение. 5 класс.Скачать

Решение задач уравнением. Задачи по математике для 5 класса.
Задача 1
Лена загадала некоторое число. Если это число уменьшить на 12, то получится 5. Какое число загадала Лена?
- Решение
- Пусть число, которое задумала Лена x. Тогда:
- x – 12 = 5,
- x = 12 + 5,
- x = 17.
- Ответ: Лена загадала число 17.
Задача 2
Некоторое число увеличили в 7 раз, после чего получили 119. Что это за число?
- Решение
- Пусть y неизвестное число. Тогда:
- 7y = 119,
- y = 119 : 7,
- y = 17.
- Ответ: это число 17.
Задача 3
Найдите числа, следующие друг за другом, если их сумма равна 159.
- Решение
- Пусть первое число равно x. Тогда:
- x + x + 1 = 159,
- 2x + 1 = 159,
- 2x = 159 – 1 = 158,
- x = 158 : 2,
- x = 79,
- x + 1 = 79 + 1 = 80.
- Ответ: 79, 80.
Задача 4
Одно число больше другого на 38. Чему равны эти числа, если их сумма равна 184.
- Решение
- Пусть меньшее число равно y. Тогда:
- y + y + 38 = 184
- 2y + 38 = 184,
- 2y = 184 – 38 = 146,
- y = 146 : 2 = 73,
- y + 38 = 73 + 38 = 111.
- Ответ: 111, 73.
Задача 5
За три дня турист преодолел 105 км. Сколько километров турист преодолел в первый день, если в каждый последующий день он преодолевал на 3 км больше, чем в предыдущий?
- Решение
- Пусть в первый день турист преодолел x км. Тогда:
- x + x + 3 + x + 3 + 3 = 105,
- 3x + 9 = 105,
- 3x = 105 – 9 = 96,
- x = 96 : 3 = 32 (км).
- Ответ: в первый день турист преодолел 32 км.
Задача 6
Сколько лет маме, если она старше дочери на 24 года, а дочь моложе матери в 7 раз?
- Решение
- Пусть дочери x лет. Тогда:
- x + 24 = 7x,
- 24 = 7x – x,
- 6x = 24,
- x = 24 : 6 = 4,
- x + 24 = 4 + 24 = 28.
- Ответ: маме 28 лет.
Задача 7
На рисунке изображены треугольники и четырехугольники. Сколько тех и других изображено на рисунке, если у всех фигур вместе 69 углов, а всего фигур — 18?
- Решение
- Пусть на рисунке изображено x четырехугольников. Тогда:
- 4x + (18 – x) * 3 = 69,
- 4x + 54 – 3x = 69,
- x = 69 – 54 = 15,
- 18 – x = 18 – 15 = 3.
- Ответ: на рисунке было изображено 15 четырехугольников и 3 треугольников.
Задача 8
Швейная мастерская закупила 2 сорта ткани всего 49 метров. Стоимость одного 110 рублей за 1 метр, стоимость другого 100 рублей за 1 метр. Сколько метров каждого сорта было куплено, если всего потратили 5150 рублей?
- Решение
- Пусть первого сорта ткани было закуплено x метров. Тогда:
- 110x + (49 – x) * 100 = 5150,
- 110x + 4900 – 100x = 5150,
- 10x = 5150 – 4900 = 250,
- x = 250 : 10 = 25,
- x – 25 = 49 – 25 = 24.
- Ответ: первого сорта ткани было куплено 25 метров, второго 24 метра.
Задача 9
Мама покупала в магазине овощи и фрукты. За овощи она заплатила на 90 рублей меньше чем за фрукты, а за фрукты заплатили в 2 раза больше, чем за овощи. Сколько мама заплатила за овощи и за фрукты по отдельности?
- Решение
- Пусть за овощи мама заплатила x рублей. Тогда:
- x + 90 = 2x,
- x = 90,
- 2x = 2 * 90 = 180 (рублей).
- Ответ: за фрукты мама заплатила 180 рублей, за овощи 90 рублей.
Задача 10
Стоимость фломастеров и тетрадей вместе составляет 276 рублей, стоимость фломастеров составляет 0,6 стоимости книги, а тетради на 60 рублей дороже книги. Сколько стоят тетради?
- Решение
- Пусть тетради стоят x рублей. Тогда:
- (276 – x) : 0,6 – x = 60,
- 276 – x = (60 + x) * 0,6,
- 276 – x = 36 + 0,6x,
- 1,6x = 276 – 36 = 240,
- x = 240 : 1,6 = 150 (рублей).
- Ответ: тетради стоят 150 рублей.
Задача 11
Саша задумал 3 натуральных числа. Первое из чисел наибольшее двузначное число, второе в 4 раза больше третьего. Что за числа задумал Саша, если сумма этих чисел равна 934?
- Решение
- Наибольшее двузначное число – 99. Пусть третье число равно x. Тогда:
- x + 4x + 99 = 934,
- 5x = 934 – 99 = 835,
- x = 835 : 5 = 167;
- 4x = 4 * 167 = 668,
- Ответ: Саша задумал числа 99, 167, 668.
Задача 12
На трех книжных полках стояли книги. На первой полке книг стояло в 2 раза меньше, чем на второй, а на третьей на 4 меньше чем на первой. Сколько книг стояло на каждой из полок, если всего в шкафу было 88 книг?
- Решение
- Пусть на первой полке стояло x книг. Тогда:
- x + 2x + x – 4 = 88,
- 4x = 88 + 4 = 92,
- x = 92 : 4 = 23 (книги) на первой полке;
- 2x = 2 * 23 =46 (книг) на второй полке;
- x – 4 = 23 – 4 = 19 (книг) на третьей.
- Ответ: на первой полке стояло 23 книг, на второй 46, на третьей 19.
Видео:Как решать задачи по математике в 6 классе на части (дроби) с помощью уравнения и без уравнения.Скачать

Презентация «Решение уравнений и задач по теме «Обыкновенные дроби»» (урок-сказка «Спасение похищенных чисел»)
презентация к уроку по математике (5 класс) на тему
Видео:Урок 14 Решение задач с помощью уравнений (5 класс)Скачать

Презентация «Решение уравнений и задач по теме «Обыкновенные дроби»»
Видео:Обыкновенные дроби и действия над ними. Практическая часть. 5 класс.Скачать

(урок-сказка «Спасение похищенных чисел»)
Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Скачать:
| Вложение | Размер |
|---|---|
| prezentatsiya1.ppt | 1.54 МБ |
Предварительный просмотр:
Видео:ВСЯ математика 5-го класса в одном видео! Альфа-школаСкачать

Подписи к слайдам:
Урок — сказка «Спасение похищенных чисел»
1 день – 4/7 от всего поля — это 28 га Всего — ?
725:29 ∙13=325(мужчин) 2) 725-325 =400 (женщин) Численность населения села Низовка 725 человек, 13/29 из них- мужчины. Сколько в селе женщин?
В библиотеку клуба поступило 200 новых книг и журналов. При этом этого количества составили журналы для взрослых и этого количества составили журналы для детей. Все остальные книги – художественные. Сколько художественных книг поступило в библиотеку? 2) 200:10 ∙ 6=120 (журн.) 3) 200-120=80 (книг) Ответ: В библиотеку поступило 80 художественных книг
№ 1 а) в) 23: 45= б) г) 7:56= № 2 Правильные дроби: Неправильные дроби:
Протяжённость нашей республики с запада на восток 280 км, а с севера на юг в среднем 93км. Найдите площадь Мордовии, если она занимает территорию, равную площади прямоугольника с такими сторонами.
Домашнее задание: П. 27, №1068(а),№ 1822, №1824
🔥 Видео
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Учимся дома. 5 класс. Математика: Задачи на частиСкачать

Уравнение с дробями видео урок ( Математика 5 класс )Скачать

Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать

как решать дробиСкачать

Математика 5 класс (Урок№16 - Задачи «на части».)Скачать

Решение задач с помощью уравнений.Скачать

Задача на нахождение части от числа. Как решать задачи с дробями?Скачать

Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

Упрощение выражений. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать

Уравнения с дробями 5 класс (задания, примеры) - как решать?Скачать






























































