П риведенные ниже задачи, на первый взгляд, — почти типовые. Большинство из них не представляют особой сложности для способного ученика, однако если репетитору по математике поставить перед ребенком условие не использовать уравнения, то задачи сразу же перейдут в категорию олимпиадных. Одновременно с увеличением уровня их сложности репетитор расширяет диапазон возрастов, для которых можно эти решения показывать.
Попробуйте справиться с задачами самостоятельно. Если не получится — приходите ко мне на занятия.
1) За ручку, тетрадь и пенал заплатили 20 рублей. Ручка стоит на 9 рублей больше тетради, а ручка вместе с тетрадью стоят на 16 рублей больше, чем пенал. Сколько стоит отдельно каждая вещь?
2) В банке живут пауки и жуки. Всего их 18 штук. У паука 8 лапок, а у жука 6 лапок. Сколько живет в банке пауков и сколько жуков, если у них всего 120 лапок?
3) Из металлического прута можно нарезать или 80 равных кусочков или 120. В первом случае каждый кусочек будет на 5 г тяжелее. Найдите вес прута.
4) Лыжник прикинул, что если о будет бежать на лыжах со скоростью 10км/ч, то опаздает к полудню ровно на час, а если со скоростью 15 км/ч, придет раньше на час. С какой скоростью ему бежать дистанцию, если нужно прибыть в конечную точку ровно в полдень?
5) Стас и Олег живут в одном доме. Первый успевает дойти до дома репетитора по математике за 20 мин, а второй за 30 минут. За какое время Стас догонит Олега, если Олег выйдет к репетитору на 5 минут раньше?
6) Если Таня идет до дома бабушки пешком, а братно едет на трамвае, то тогда на всю дорогу она тратит полтора часа. Если она едет в обе стороны на трамвае, то на весь путь уходит 30 минут. Сегодня трамваи не ходят. Сколько времени уйдет на дорогу до бабушки и обратно, если идти в оба конца пешком?
7) Заработок мастера за один рабочий день совтавляет 1300р вместе с надбавкой. Основная плата на 1000 рублей больше надбавки. Найдите величину заработной планы без надбавки.
8) Две груши и один банан весят вместе 260г, а три таких же груши и тот же банан уже 420г. Сколько весит одна груша вместе с одним бананом?
9) На двух полках у преподавателя математики 24 учебника. На каждую из них он дополнительно поставил столько же учебников, сколько стояло на соседней. Какое количество учебников теперь у него стоит на двух полках?
Колпаков Александр Николаевич, репетитор по математике Москва, Строгино.
я учусь в 6 классе и мне очень помогает ваш сайт. В следующем году буду участвовать в олимпиаде по математике в МГУ. А здесь очень много олиимпиадных заданий. Я вам очень благодарна!
- Как решать задачи по математике 5 класс
- Почему инструкция лучше решебника
- Почему важно уметь решать задачи по математике
- Какие бывают задачи по математике в 5-ом классе
- Задачи на сложение, вычитание, умножение и деление
- Пример 1
- Пример 2
- Задачи на скорость, время, расстояние
- Пример 1
- Пример 2
- Задачи на движение
- Пример 1
- Пример 2
- Задачи, решаемые алгебраическим способом
- Пример 1
- Пример 2
- Задачи, решаемые геометрическим способом
- Пример 1
- Пример 2
- Нужен ли ребёнку репетитор по математике в пятом классе?
- Как решить проблемы с математикой
- Гуманитариям математика не нужна?
- Математика — сложный предмет
- Формула спокойствия
- Задачи по математике для учеников 5 класса на составление уравнений
- Задачи по математике для учеников 5 класса на составление уравнений.
- 🎬 Видео
Видео:Урок 14 Решение задач с помощью уравнений (5 класс)Скачать
Как решать задачи по математике 5 класс
Существует много причин, по которым ребёнок не может решить задачу по математике 5 класс. В большинстве из них он не виноват, поэтому стоит ему помочь разобраться с проблемой. Задачи не такие трудные, но в связи с появлением дробей и уравнений иногда сложно определить способ и верный путь их решения.
Содержание статьи:
Видео:Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать
Почему инструкция лучше решебника
В этой инструкции вы сможете найти типовые задачи, которые встречаются в курсах математики за 5 класс и разобранное, подробное, пошаговое решение. Это значительно полезнее книг, так как в них собраны далеко не все задачи, а те решения, которые есть, сжаты до минимума. Поэтому пользоваться решебником — порой не самый лучший выход.
Решебник по математике не всегда может дать исчерпывающую информацию
Как правило, при составлении ответов на свои задачи авторы не расписывают подробности и дают решения не ко всем номерам. Возможно, в расчёт идёт тот факт, что ученик способен справиться самостоятельно. Но вдруг ребёнок пропустил тему, что же тогда делать?
Лучший вариант — посмотреть решение типовых задач с пояснениями каждого действия. В этой инструкции собраны самые распространённые примеры, которые вызывают трудности у детей при решении, а также родителей при попытке объяснить задачу.
Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
Почему важно уметь решать задачи по математике
Математика — точная дисциплина, связанная с вычислениями. Но её часто называют царицей всех наук. Это не просто так. Основное, чему учатся дети — решение конкретно поставленных задач. Это самое важное для развития любого человека.
Для построения правильного ответа на задачу нужно выделить:
- главную мысль;
- заданное условие;
- что требуется найти;
- связь между искомым и данным.
Математика — один из самых важных предметов в школьной программе
На основе этого строится логичное решение с использованием условий для получения требуемого результата. Вместе с этим развивается познавательная активность, логические мышление.
Видео:Как решать уравнения. Решение текстовых задач с помощью уравнений. Математика 5 класс. Видеоурок #6Скачать
Какие бывают задачи по математике в 5-ом классе
В 5-ом классе по математике встречается несколько разновидностей задач. Этот год самый важный для ученика, потому что здесь собраны все базовые условия, которые углублённо решаются в следующие годы обучения. Здесь представлен список самых распространённых задач:
- на базовые арифметические действия;
- на скорость, время и расстояние;
- на движение;
- решаемые алгебраическим способом — проценты, дроби, уравнения;
- решаемые геометрическим способом — площадь, длина.
Существует немало различных задач и путей их решения
Для грамотного решения всех типов задач можно составить единый алгоритм:
- Прочитайте вдумчиво, не торопясь полный текст задачи;
- Определите к какому типу она относится;
- На основе этого составьте краткое условие или таблицу;
- Начните читать каждое предложение отдельно, заполняя таблицу или краткое условие;
- Определите вопросом то, что нужно найти;
- Выберите вариант решения и составьте выражение, в результате которого получится ответ;
- Проверьте правильность и соответствие условию;
- Запишите полученный ответ.
Далее представлены все типы задач, которые могут встретить пятиклассники в учебниках и задачниках по математике. Все они будут разобраны на двух примерах с подробным разъяснением.
Видео:Решение задач с помощью уравнений.Скачать
Задачи на сложение, вычитание, умножение и деление
Пример 1
- Для начала запишем краткое условие в виде таблицы. Повар брал муку четыре раза, значит для каждого раза делаем по одной строчке.
- Всего у нас было 3000 грамм. Это ещё одна строка.
- От нас требуют найти остаток, значит — это последняя строка.
- Заполняем таблицу. Какой она получится, смотрите ниже.
Таблица 1 — Краткое условие
Условие | Количество |
---|---|
Было | 3000 |
Первый раз | 250 |
Второй раз | 320 |
Третий раз | 140 |
Четвёртый раз | 690 |
Осталось | ? |
- Сделанная таблица наглядно показывает, что для расчёта остатка нужно из 3000 вычесть количество, которое повар забрал всего;
- Для этого сложим количество муки, которое повар израсходовал за четыре раза. Получается такое выражение: 250+320+140+690=1400 грамм;
- Теперь найдём остаток. Для этого из того, что было, вычтем полученное значение — 1400. Получим выражение: 3000-1400=1600 грамм. Это то, что от нас требовалось — найти сколько осталось муки;
- Записываем это в ответ к задаче.
вернуться к меню ↑
Пример 2
- Составляем краткое условие. Нагляднее всего будет снова использовать таблицу;
- У нас есть количество вагонов — первая строчка. Количество свободных мест в каждом вагоне — вторая строка. Места, которые заняли пассажиры — третья. Сколько осталось мест — четвёртая;
- Далее заполняем таблицу числами из условия. Что получилось, смотрите ниже;
Таблица 2 — Условие задачи
Места в вагоне | Количество |
---|---|
Кол-во вагонов | 12 |
Кол-во мест в вагоне | 40 |
Кол-во пассажиров | 352 |
Осталось мест | ? |
- Теперь приступаем к вычислениям. Для начала нам нужно узнать сколько всего свободных мест было в вагонах. Для этого умножим количество вагоном на количество свободных мест в каждом. Получается выражение: 40×12=480;
- Для того, чтобы найти сколько осталось свободных мест нужно, из полученного значения вычесть занятые места. Получим выражение: 480-352=128;
- Полученное число — это ответ на вопрос из условия задачи. Записываем его.
Видео:Уравнение. 5 класс.Скачать
Задачи на скорость, время, расстояние
Пример 1
- Записываем краткое условие. В этом типе задач оно немного отличается от стандартного;
- У нас есть два объекта — теплоход и поезд. Это значит, что в таблице будет две строки;
- Для каждого объекта есть три значения, соответственно, и столбцов будет три;
- Заполняем числами таблицу. Что должно получится смотрите ниже;
Таблица 3 — Краткое условие
Скорость | Время | Расстояние | |
---|---|---|---|
Теплоход | ? | 7 | 210 |
Поезд | ? | 3 | 360 |
- Приступим к поиску неизвестных. Нам нужно узнать скорость у теплохода и поезда. Для этого используется формула — скорость равна результату деления расстояния на время. Математически записывается так — V=S:T;
- Подставив числа из условия, получаем выражение для скорости теплохода. 210:7=30 км/ч;
- Также поступаем и для расчёта скорости поезда. 360:3=120 км/ч;
- Мы нашли все неизвестные и теперь возвращаемся к главному вопросу задачи. Нам нужно определить во сколько раз скорость поезда превышает скорость теплохода;
- Для этого делим большее значение на меньшее. Получается: 120:30=4;
- В ответ пишем, что скорость теплохода и поезда отличается в 4 раза.
Пример 2
- Записываем краткое условие. Объект один, значит строка будет одна. Столбцов стандартно три;
- Заполняем числа из условия в таблицу. Что получится смотрите ниже;
Таблица 4 — краткое условие
Скорость | Время | Расстояние | |
---|---|---|---|
Автомобиль | ? | 4 | 320 |
- Ищем неизвестные. В нашем случае нужно найти скорость. Для этого воспользуемся формулой V=S:T. Подставляем числа и получаем: 320:4=80 км/ч;
- После того, как стали известны все значения, переходим к главному вопросу задачи — сколько проедет автобус за 8 часов с той же скоростью;
- Для расчёта используем формулу S=VT. Подставляем числа и получаем: 80×8=640 км;
- Записываем полученное значение в ответ к задаче.
Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать
Задачи на движение
Пример 1
- Начинаем с составления краткого условия. Лучше всего оформить в качестве таблицы;
- Велосипедиста два— значит нужны 2 строки. Столбцов стандартно 3. Но в этом типе задач у нас будут общие показатели. То есть, расстояние и время всегда одно сразу для всех строк;
- Заполняем таблицу числами. Что должно получится смотрите в ниже;
Таблица 5 — краткое условие
Скорость | Время | Расстояние | |
---|---|---|---|
1 велосипедист | 10 | ? | 125 |
2 велосипедист | 15 | ? | 125 |
- Теперь переходим к расчётам. Логично, что для встречи велосипедисты должны проехать в сумме весь путь. Необязательно одинаковое расстояние, так как оно зависит от скорости каждого из них;
- Нам нужно посчитать какое расстояние они преодолевают в час. Для этого сложим скорости первого и второго. Получаем выражение: 10+15=25 км/ч;
- Для расчёта времени через которое они встретятся нужно воспользоваться формулой T=S:V. Подставляем числа и получаем выражение: 125:25=5 ч;
- Соответственно, велосипедисты пересекутся между собой через 5 часов. Записываем это в ответ.
Пример 2
- Составим таблицу, в которой ситуация из условия будет наглядно представлена;
- Два автомобиля — две строки. Стандартное количество столбцов — три;
- Заполняем числами из условия. Что должно получится, смотрите ниже;
Таблица 6 — краткое условие
Скорость | Время | Расстояние | |
---|---|---|---|
1 автомобиль | ? | 5 | 600 |
2 автомобиль | 80 | 5 | 600 |
- Переходим к расчётам. Для нахождения скорости первого автомобиля нам нужно знать, сколько километров он проехал. Найти это можно, вычтя из общего пути расстояние, которое проехал второй до их встречи;
- Используем формулу S=VT. Подставляем числа из таблицы, получаем выражение: 80×5=400 км. Это расстояние прошёл второй автомобиль до встречи с первым. Значит, первый проехал всего: 600-400=200 км;
- Теперь можно найти скорость первого автомобиля. Используем формулу V=S:T. Подставляем числа: 200:5=40 км/ч;
- Полученное значение — ответ на главный вопрос задачи. Записываем его.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Задачи, решаемые алгебраическим способом
Пример 1
- Начинаем с составления краткого условия в виде таблицы. В подобных типовых задачах нужно обозначать неизвестное за «x»;
- Потребуются три строки: сколько молока было, сколько его отлили и сколько осталось;
- Заполняем числами таблицу;
Таблица 7 — краткое условие задачи
Было | Х |
---|---|
Отлили | 80 |
Осталось | 240+80 |
- Приступаем к расчётам. Нам нужно узнать, сколько было молока изначально. Для этого составляем уравнение. От начального количества вычитаем отлитое и получаем остаток;
- Математически получаем такую запись: x-80=240+80;
- Начинаем решение с того, что считаем всё, что можно посчитать. В данном случае складываем правую часть уравнения. 240+80=320. Теперь уравнение имеет вид: x-80=320;
- Теперь находим «x». Используем базовое правило математики и получаем следующее: x=320+80. Считаем правую часть и получаем: x=400;
- Возвращаемся к началу и смотрим, что мы обозначили за «x». В этом примере за икс мы взяли объём молока, который был изначально. То есть, изначально было 400 литров молока;
- Записываем полученное значение в ответ.
Пример 2
- Записываем краткое условие в виде таблицы;
- Потребуется четыре строки, так как нам дали три слагаемых и их сумму;
- Заполняем таблицу числами, обозначив за икс последнее слагаемое. Выбираем третье, потому что от него зависят все остальные;
1 слагаемое | (x-14)+52 |
---|---|
2 слагаемое | x-14 |
3 слагаемое | x |
Сумма | 327 |
- Приступаем к расчётам. Для нахождения слагаемых нужно решить уравнение, после чего число подставить в выражения из таблицы.
- Уравнение составляется исходя из условия – три слагаемых и сумма – складываем значения из второго столбца таблицы и приравниваем это к сумме.
- Получится такое выражение: (x-14)+52+(x-14)+x=327.
- Открываем скобки и упрощаем выражение: 3x+24=327.
- Переносим числа в правую часть: 3x=303
- Считаем икс: 303:3=101.
- Теперь подставляем число 101 в таблицу вместо икса.
- Получается третье слагаемое равно 101; второе: 101-14=87; первое: 87+52=139.
- Эти числа записываем в ответ. Легко проверить правильность решения просто сложив эти значения. Если пример получается правильный, то и решено всё верно.
Видео:11. Уравнения (Виленкин, 5 класс)Скачать
Задачи, решаемые геометрическим способом
Пример 1
- Для решения нужно вычислить площадь каждой двери, которую нужно покрасить. Для этого используем формулу площади прямоугольника – S=ab, где a и b – длины сторон. Подставляем числа из условия и получаем: S=2×1=2 м2;
- Далее умножаем площадь на 2, потому что каждую дверь нужно окрасить с двух сторон. Получаем 2×2=4 м2. То есть, покрасочная площадь каждой двери равна 4 квадратным метрам;
- Посчитаем общую площадь для всех дверей. Для этого умножаем площадь одной на их количество: 4×4=16 м2;
- Главный вопрос задачи — сколько потребуется белил для всех дверей? Чтобы посчитать умножаем количество, требующееся на 1 квадратный метр на всю площадь: 100×16=1600 грамм;
- Записываем это значение в ответ.
Пример 2
- Для начала нужно посчитать другую сторону прямоугольника. Делается это с помощью формулы площади: S=ab, где a и b — длины сторон. Подставляем числа и получаем: 192=16*a. Отсюда получается, что вторая сторона — 12 см;
- Для нахождения периметра воспользуемся формулой P=2(a+b). Подставляем числа и получаем: P=2(16+12)=2×28=56 см;
- Найденное значение записываем в ответ.
Видео:Уравнения. 5 классСкачать
Нужен ли ребёнку репетитор по математике в пятом классе?
После перехода в средний этап школы у ребёнка может упасть успеваемость по некоторым предметам, в том числе и по математике. Более того математика — самый проблематичный предмет для детей. Некоторые родители сразу бьют тревогу и ищут репетиторов, чтобы исправить эту ситуацию.
На самом деле, не стоит делать поспешных выводов. Для начала нужно определить причину падения успеваемости. Возможно, некоторые из новых учителей просто халатно относятся к преподнесению нового учебного материала. Другие преподаватели не могут найти особый подход к ребёнку в связи с ограничением по времени.
У многих детей в школе возникают сложности с изучением математики
Это не значит, что ваш ребёнок неспособный к определённым дисциплинам. Попробуйте объяснить ему материал самостоятельно, ведь именно вы знаете своё чадо лучше других. Если и это не помогло, то обращайтесь к помощи репетитора.
Главная задача специалиста — найти персональный подход к каждому ученику. Они смогут максимально эффективно и просто объяснить ребёнку тему в зависимости от особенностей его восприятия и склада ума.
Перед обращением убедитесь, что ухудшение оценок произошло только по нескольким взаимосвязанным предметам, а не в целом. Если успеваемость сильно упала в общем плане, то скорее всего ребёнок ленится. Связано это может быть со скукой на уроках и утратой интереса к учёбе. В таком случае, поговорите с ним, объясните, что это очень важно и пригодится в жизни, приводя аргументы и наглядные примеры.
Конечно, если это связано, например, с пропуском занятий по причине болезни, или в школе неправильно преподносится материал, то стоит задуматься о найме репетитора. Он поможет в кратчайшие сроки улучшить результаты ребёнка.
Видео:Математика 5 класс (Урок№16 - Задачи «на части».)Скачать
Как решить проблемы с математикой
Как только у ребёнка появляются проблемы с математикой родители почему-то начинают думать, что причина заключается в плохой предрасположенности к точным наукам. Потому что формулы вроде бы знает, простые примеры решить тоже может, но каждая контрольная и самостоятельная работа превращается в целое испытание для всей семьи. Все сидят в ожидании результатов. Никогда нельзя сказать точно какую оценку получит ребёнок — четвёрку или двойку.
Дети часто получают плохие отметки именно по математике
Также много жалоб по типу: занимаемся все выходные напролёт, учим эту математику, учим, а в итоге всё равно результат прежний. На самом деле, причина такого плохого восприятия — отсутствие адекватных причин заниматься всеми этими цифрами. Большинство родителей сходятся во мнении, что ребёнок просто гуманитарий, главное — литература, история, обществознание, а математика неважна.
Гуманитариям математика не нужна?
Это огромная ошибка, ведь для лучшего восприятия точных наук этому самому «гуманитарию» нужно лишь вдохновение и цель. Отлично будет, если ребёнку объяснить, что математика — это такая же наука, как и любая другая, и она не ограничивается уравнениями и задачами. Это нечто большее. Математика позволяет изменить мышление, воспринимать старые вещи по-новому.
Именно логическое мышление в первую очередь развивает математика и воспринимать это нужно, как возможность расширения кругозора и свежего взгляда на старое. Также точные науки помогают дисциплинировать свой ум и комплексно подходить к решению поставленных задач.
Математика — сложный предмет
Самая популярная отговорка заключается в том, что математика — самый сложный предмет из всех. Нет, на самом деле это одна из самых простых и понятных дисциплин. Для сравнения, возьмите наш богатый русский язык.
Мало того, что в нём существует немало правил орфографии, пунктуации, стилистики, так ещё и исключения есть почти в каждом правиле. Вот уж где нужно запоминать «тонну» информации.
В то же время в математике существуют базовые правила, на которых строятся все остальные. То есть, более сложное всегда можно привести к простому. Всё построено на железной логике, и, следуя этим правилам, вы сможете решить задачи, которые казались на первый взгляд непосильными.
Вспомните, как учат всех детей. Для того, чтобы научить их писать, сначала нужно выводить палочки, точки, изгибы. Потом уже буквы, а из букв — простые слова, из слов — предложения.
Начните изучать математику с самых простых уравнений
В математике с самого начала всё объясняется на пальцах или предметах. При этом, за то же самое время, потраченное на русский язык и на математику, прогресс в изучении второй будет больше. Например, считать учатся дети на яблоках, конфетках.
Используйте это и для решения более сложных задач. В пятом классе аналогии привести не составит труда. Это поможет ребёнку ассоциировать вычисления не с сухими числами, а, например, с мандаринами.
Видео:Правила решения уравнений в 5 классе. Как запомнить и вывести их самому.Скачать
Формула спокойствия
Часто плохие оценки становятся причиной ссор между родителями и детьми. Это категорически неправильно. Вместо того, чтобы высказывать ребёнку, что он «ленится», «не думает о будущем» да и в общем «туго соображает», следует отвести от неудачи или помочь исправиться с ней.
Но под помощью подразумевается не «вдалбливание» и «зубрёжка» неинтересных формул и правил. Следует возбудить интерес к теме, которая была плохо воспринята. Да и к тому же поставить правильную цель ребёнку. Не нужно говорить, что от оценок зависит его будущее. Вообще не зацикливайте внимание на оценках.
По исследованиям российских психологов дети, которые хотели стать врачами, инженерами и просто хорошими людьми, быстро повышали свою успеваемость. А те ученики, которым с первого класса «вдалбливают» в голову знания, думали только о том, как не стать худшим в классе, и уделяли своим отметкам слишком большое внимание.
Лучшим вариантом по-прежнему остаются занятия с репетитором. Он сохранит нервы, и вам, и ребёнку. Обеспечивая нужное количество времени на обучение и выбрав правильный подход, ученик станет показывать результаты лучше прежнего. Но, моментально отличником вашего ребёнка это не сделает.
Надеемся, что вы смогли найти решение задач, которое искали. Также для понимания темы рекомендуем посмотреть видео по этой теме от организаторов специальной математической школы федерального уровня «Аристотель» .
» alt=»Как решать задачи по математике 5 класс»>
Некоторые ученики, как пятых, так и других классов, часто сталкиваются с проблемами в изучении математики. В этом случае родителям не стоит впадать в панику. Следует уделить больше внимания детальному разбору примеров и задач. Если это не улучшит успеваемость, есть смысл обратиться за помощью к репетитору.
Видео:Задача на составление уравнения 5 классСкачать
Задачи по математике для учеников 5 класса на составление уравнений
Видео:Решение задач с помощью уравнений. 5 классСкачать
Задачи по математике для учеников 5 класса на составление уравнений.
Для приготовления салата берут 4 части помидор, 3 части огурцов и 1 часть зелени. Всего получилось 480 грамм салата. Сколько грамм помидор было взято?
У Веры было в 5 раз больше слив, чем у Даши. При этом у Даши было на 16 слив меньше. Сколько слив было у Даши? У Веры?
У Дениса было в 3 раз больше монет, чем у Васи. А у Димы в 2 раза больше монет, чем у Дениса. Всего же монет было 50. Сколько монет было у Васи? У Дениса?
Для приготовления варенья взяли 4 части сахара и 7 частей фруктов. Всего получилось 660 грамм варенья. Сколько грамм сахара было взято?
У Насти было в 3 раза больше груш, чем у Иры. При этом, у Иры было на 14 груш меньше, чем у Насти. Сколько груш было у Иры? У Насти?
Для приготовления теста взяли 5 частей муки, 2 части молока и 1 часть масла. Общий вес теста составил 960 грамм. Сколько грамм молока было взято?
У Ивана было в 6 раз меньше мандарин, чем у Пети. При этом у Пети было на 15 мандарин больше. Сколько мандарин было у Ивана? У Пети?
Мальчик проехал на автобусе 3 части пути от дома, а пешком прошел 2 части пути. Всего же он преодолел 15 км. Сколько км мальчик прошел?
У Вики было в 4 раза меньше апельсин, чем у Оли. При этом у Оли было на 12 апельсин больше, чем у Вики. Сколько апельсин было у Вики? У Оли?
Света задумала число, умножила его на 4 и к произведению прибавила 8. В результате она получила 60. Какое число задумала Света?
Собрали несколько килограммов свежей вишни. После того, как из 7 кг сварили варенье, а затем собрали ещё 5 кг, то свежей вишни стало 10 кг. Сколько вишни собрали изначально?
В одной корзине в 6 раз меньше яблок, чем в другой. Сколько яблок в каждой корзине, если в двух корзинах 98 яблок?
Задача № 13
В трёх автобусах 188 пассажиров, причём в первом автобусе на 9 пассажиров больше, чем во втором, и на 8 меньше, чем в третьем. Сколько пассажиров в каждом автобусе?
Задача № 14
В двух залах кинотеатра 460 мест. Сколько мест в большом зале, если известно, что в нём в 3 раза больше мест, чем в малом зале?
Задача № 15
В школе 900 учащихся. Сколько учащихся в начальных, средних и старших классах, если в начальных классах их в 3 раза больше, чем в старших, и в 2 раза меньше, чем в средних?
Задача № 16
Площадь кухни в 3 раза меньше площади комнаты, поэтому для ремонта пола кухни потребовалось на 24 м2 линолеума меньше, чем для комнаты. Какова площадь кухни?
Задача № 17
Одна сторона прямоугольника в 4 раза меньше другой. Чему равны длина и ширина прямоугольника, если его периметр равен 70 см?
Задача № 18
На пруду плавали белые и серые утки, причём серых было в 3 раза больше, чем белых. После того, как на пруд прилетели 5 лебедей, то птиц всего оказалось 29. Сколько серых уток плавало на пруду?
Задача № 19
В 5 «Б» классе из 27 учащихся «3» получили за контрольную по математике в 6 раз меньше человек, чем «4» и в 2 раза меньше, чем «5». Сколько учащихся получили «3», «4» и «5» за контрольную работу?
Деду 56 лет, внуку — 14. Через сколько лет дедушка будет вдвое старше внука?
Задача № 21
Упаковка чая на 50 копеек дороже пакета кофе. Вася купил 7 упаковок чая и 6 пакетов кофе, потратив 68 рублей 50 копеек. Сколько стоит пакет кофе?
Задача № 22
9 одинаковых тетрадок стоят 11 рублей с копейками, а 13 таких же тетрадок — 15 рублей с копейками. Сколько стоит одна тетрадка?
Задача № 23
Представьте число 45 в виде суммы четырёх чисел так, что после прибавления 2 к первому числу, вычитания 2 из второго, умножения на 2 третьего и деления на 2 четвёртого эти числа станут равными.
Задача № 24
В трёх ящиках лежат орехи. В первом на 6 орехов меньше, чем в двух других вместе, а во втором на 10 орехов меньше, чем в первом и третьем. Сколько орехов в третьем ящике?
Задача № 25
Вифсла, Тофсла и Хемуль играли в снежки. Первый снежок бросил Тофсла. Затем в ответ на каждый попавший в него снежок Вифсла бросал 6 снежков, Хемуль — 5, а Тофсла — 4. Через некоторое время игра закончилась. Найдите, в кого сколько снежков попало, если мимо цели пролетели 13 снежков. (В себя самого снежками не кидаются.)
Задача № 26
Ваня 28 ноября сказал: «Сегодня разность между числом прожитых мною полных месяцев и числом полных лет впервые стала равна 144». Когда у Вани День рождения?
Задача № 27
Лена загадала некоторое число. Если это число уменьшить на 12, то получится 5. Какое число загадала Лена?
Задача № 28
Некоторое число увеличили в 7 раз, после чего получили 119. Что это за число?
Задача № 29
Найдите числа, следующие друг за другом, если их сумма равна 159.
Задача № 30
Одно число больше другого на 38. Чему равны эти числа, если их сумма равна 184.
Задача № 31
За три дня турист преодолел 105 км. Сколько километров турист преодолел в первый день, если в каждый последующий день он преодолевал на 3 км больше, чем в предыдущий?
Задача № 32
Сколько лет маме, если она старше дочери на 24 года, а дочь моложе матери в 7 раз?
Задача № 33
На рисунке изображены треугольники и четырехугольники. Сколько тех и других изображено на рисунке, если у всех фигур вместе 69 углов, а всего фигур — 18?
Задача № 34
Швейная мастерская закупила 2 сорта ткани всего 49 метров. Стоимость одного 110 рублей за 1 метр, стоимость другого 100 рублей за 1 метр. Сколько метров каждого сорта было куплено, если всего потратили 5150 рублей?
Задача № 35
Мама покупала в магазине овощи и фрукты. За овощи она заплатила на 90 рублей меньше чем за фрукты, а за фрукты заплатили в 2 раза больше, чем за овощи. Сколько мама заплатила за овощи и за фрукты по отдельности?
Стоимость фломастеров и тетрадей вместе составляет 276 рублей, стоимость фломастеров составляет 0,6 стоимости книги, а тетради на 60 рублей дороже книги. Сколько стоят тетради?
Задача № 37
Саша задумал 3 натуральных числа. Первое из чисел наибольшее двузначное число, второе в 4 раза больше третьего. Что за числа задумал Саша, если сумма этих чисел равна 934?
Задача № 38
На трех книжных полках стояли книги. На первой полке книг стояло в 2 раза меньше, чем на второй, а на третьей на 4 меньше чем на первой. Сколько книг стояло на каждой из полок, если всего в шкафу было 88 книг?
Задача № 39
Бассейн вмещает 300 м3 воды и наполняется двумя трубами. Через первую трубу вода вливается со скоростью 20 м3/ч, а через вторую трубу – со скоростью 30 м3/ч. За сколько времени наполнится бассейн при одновременном включении двух труб?
Задача № 40
Морковь дороже картофеля на 25т., за 3 кг картофеля и 4 кг моркови заплатили 520 тенге. Сколько стоит морковь, картофель?
Задача № 41
Два поезда вышли одновременно навстречу друг другу из двух городов, расстояние между которыми 600 км. Скорость первого поезда 70 км/ч, а скорость второго 80 км/ч. Какое расстояние было между поездами через 3 ч после выхода?
Задача № 42
Пассажирский и товарный поезд вышли в одном направлении одновременно с двух станций, расстояние между которыми 512 км. Скорость пассажирского поезда была в 2 раза быстрее скорости товарного и через 8ч после выхода пассажирский поезд догнал товарный. С какими скоростями они шли?
Задача № 43
В клетке находятся фазаны и кролики. Известно, что у них 35 голов и 94 ноги. Узнайте число фазанов и число кроликов.
Задача № 44
Туристы прошли пешком х км. И проехали на автомобиле 3 х км. Весь путь равен 124 км.
Задача № 45
Ученик задумал число. Умножил его на 2, к произведению прибавил 19 и получил сумму, равную 37. Какое число задумал ученик?
Отец старше сына на 20 чет, а сын моложе отца в 5 раз. Сколько лет отцу и сколько лет сыну?
Задача № 46
В одном бидоне молока в раза больше, чем в другом. Когда из одного бидона перелили в другой литров, молока в бидонах стало поровну. Сколько литров молока было в каждом бидоне первоначально?
Задача № 47
Ксения задумала натуральное число, к этому числу она прибавила
, после чего из суммы вычла задуманное число.
Задача № 48
Дмитрий задумал натуральное число, прибавил к нему
. Какое число задумал Дмитрий?
Задача № 49
На правой чашке уравновешенных весов лежат дыня и гиря массой
кг. Какова масса дыни?
Задача № 50
В корзине было неизвестное количество яблок. Сначала из нее взяли 12 яблок, а потом положили туда 5 яблок. В результате в корзине стало 24 яблока. Сколько яблок было в корзине первоначально?
Задача № 51
В корзине было 15 груш. Сначала из нее взяли 7 груш, а потом положили в нее неизвестное количество груш. В результате в корзине стало 34 груши. Сколько груш положили в корзину?
Задача № 52
В коробке было 65 конфет. Вначале из нее взяли неизвестное количество конфет, а потом доложили 7 конфет. В результате в коробке стало 34 конфеты. Сколько конфет было взято?
Задача № 53
Турист прошел часть пути за 45 минут, затем отдыхал неизвестное количество времени, и оставшуюся часть пути прошел за 34 минуты. В результате весь путь турист преодолел за 2 часа 18 минут. Сколько минут отдыхал турист?
Задача № 54
Температура воздуха была 23 градуса. В первый день она опустилась на неизвестное количество градусов, а во второй день поднялась на 5 градусов. В результате температура воздуха стала 19 градусов. На сколько градусов опустилась температура в первый день?
Задача № 55
В корзине было неизвестное количество яблок. Вскоре из нее достали 7 яблок и отдали мальчику, а потом доложили в корзину еще 14 яблок, после чего в ней стало 18 яблок. Сколько яблок было в корзине первоначально?
Задача № 56
Для приготовления мороженого взяли 3 части молока, 2 части сахара и 1 часть масла. Всего мороженое весило 120 грамм. Сколько грамм сахара взяли?
Задача № 57
В корзине было неизвестное количество яблок. Вначале из нее взяли 16 яблок, а затем положили в нее 5 яблок. В результате в корзине стало 7 яблок. Сколько яблок было в корзине первоначально?
Задача № 58
На полке стояло несколько книг. После того, как с неё сняли 8 книг, а затем положили 17, на ней стало 22 книги. Сколько книг было на полке первоначально?
Задача № 59
На трёх складах 72 тонны пшеницы. На первом в 3 раза больше, чем на втором, а на третьем в 4 раза больше, чем на втором. Сколько зерна на каждом складе?
Задача № 60
Лиза нашла грибов в 2 раза больше, чем Ваня. А Таня в 4 раза больше, чем Ваня. Сколько грибов нашёл каждый из ребят, если вместе они нашли 140 грибов?
Задача № 61
Для приготовления супа берут 7 части воды, 3 части овощей и 2 части мяса. Всего получается 3600 грамм супа. Сколько грамм овощей потребуется?
Задача № 62
В коробке было 25 конфет. Вначале в нее положили 12 конфет, а затем взяли неизвестное количество конфет. В результате в коробке осталось 11 конфет. Сколько было взято конфет?
Задача № 63
У Маши было a пирожков, у Коли b пирожков, а у Пети c пирожков. Они сложили их и поделили на 3 равные части. Сколько пирожков досталось каждому? Напишите выражение и найдите его значение при а=12, b=16, d=8.
Задача № 64
Решите задачу с помощью уравнения:
а)Мальчик задумал число и умножил его на 8. Если из данного произведения отнять 26, то получится 46. Какое число загадал мальчик?
б)75 кг мандарин разложили в несколько коробок, а потом из каждой коробки взяли 3 кг. В каждой коробке осталось 12 кг мандарин. Сколько было коробок?
Решите задачу с помощью уравнения:
а)Девочка задумала число и разделила его на 12. Если к данному частному прибавить 13, то получится 33. Какое число загадала девочка?
б)49 кг яблок разложили в несколько коробок, а потом в каждую коробку положили 2 кг. В каждой коробке стало 9 кг яблок. Сколько было коробок?
🎬 Видео
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Математика 5 класс Решение задач с помощью уравненийСкачать
1 Решение задач с помощью уравнений 5 классСкачать
Как решать задачи по математике в 6 классе на части (дроби) с помощью уравнения и без уравнения.Скачать
Решение сложных уравнений 4-5 класс.Скачать
Математика 5 класс. Уравнение. Корень уравненияСкачать