Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .
- Решение онлайн
- Видеоинструкция
- Оформление Word
- Правила ввода функции, заданной в явном виде
- Геометрическая интерпретация метода Ньютона (метод касательных)
- Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной
- Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной
- VMath
- Инструменты сайта
- Основное
- Навигация
- Информация
- Действия
- Содержание
- Метод Ньютона решения уравнения
- Геометрическая интерпретация: метод касательных
- Метод Галлея (касательных гипербол)
- Обобщения
- Целые числа
- Комплексные числа
- Системы нелинейных уравнений с несколькими неизвестными
- Задачи
- Источники
- 🌟 Видео
Правила ввода функции, заданной в явном виде
- Примеры правильного написания F(x) :
- 10•x•e 2x = 10*x*exp(2*x)
- x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
- x 3 -x 2 +3 = x^3-x^2+3
- Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .
Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
Приближенное нахождение корней уравнения складывается из двух этапов:- Отделение корней, то есть установление интервалов [αi,βi] , в которых содержится один корень уравнения.
- f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
- f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
- f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
- Уточнение приближенных корней, то есть доведение их до заданной точности.
Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать
Геометрическая интерпретация метода Ньютона (метод касательных)
Критерий завершения итерационного процесса имеет вид
Видео:Метод касательных (метод Ньютона)Скачать
Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной
Видео:Метод Ньютона (Метод касательных)Скачать
Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной
Метод Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643-1727), под именем которого и обрёл свою известность.
Метод был описан Исааком Ньютоном в рукописи De analysi per aequationes numero terminorum infinitas ( лат .О б анализе уравнениями бесконечных рядов), адресованной в 1669 году Барроу , и в работе De metodis fluxionum et serierum infinitarum ( лат.Метод флюксий и бесконечные ряды) или Geometria analytica ( лат.Аналитическая геометрия) в собраниях трудов Ньютона, которая была написана в 1671 году. Однако описание метода существенно отличалось от его нынешнего изложения: Ньютон применял свой метод исключительно к полиномам. Он вычислял не последовательные приближения xn , а последовательность полиномов и в результате получал приближённое решение x.
Впервые метод был опубликован в трактате Алгебра Джона Валлиса в 1685 году, по просьбе которого он был кратко описан самим Ньютоном. В 1690 году Джозеф Рафсон опубликовал упрощённое описание в работе Analysis aequationum universalis (лат. Общий анализ уравнений). Рафсон рассматривал метод Ньютона как чисто алгебраический и ограничил его применение полиномами, однако при этом он описал метод на основе последовательных приближений xn вместо более трудной для понимания последовательности полиномов, использованной Ньютоном.
Наконец, в 1740 году метод Ньютона был описан Томасом Симпсоном как итеративный метод первого порядка решения нелинейных уравнений с использованием производной в том виде, в котором он излагается здесь. В той же публикации Симпсон обобщил метод на случай системы из двух уравнений и отметил, что метод Ньютона также может быть применён для решения задач оптимизации путём нахождения нуля производной или градиента.
В соответствии с данным методом задача поиска корня функции сводится к задаче поиска точки пересечения с осью абсцисс касательной, построенной к графику функции .
Рис.1 . График изменение функции
Проведенная в любой точке касательная линия к графику функции определяется производной данной функции в рассматриваемой точке, которая в свою очередь определяется тангенсом угла α ( ). Точка пересечения касательной с осью абсцисс определяется исходя из следующего соотношения в прямоугольном треугольнике: тангенс угла в прямоугольном треугольнике определяется отношением противолежащего катета к прилежащему катету треугольнику. Таким образом, на каждом шаге строится касательная к графику функции в точке очередного приближения . Точка пересечения касательной с осью Ox будет являться следующей точкой приближения . В соответствии с рассматриваемым методом расчет приближенного значения корня на i -итерации производится по формуле:
Наклон прямой подстраивается на каждом шаге наилучшим образом, однако следует обратить внимание на то, что алгоритм не учитывает кривизну графика и следовательно в процессе расчета остается неизвестно в какую сторону может отклониться график.
Условием окончания итерационного процесса является выполнение следующего условия:
где ˗ допустимая погрешность определения корня.
Метод обладает квадратичной сходимостью. Квадратичная скорость сходимость означает, что число верных знаков в приближённом значении удваивается с каждой итерацией.
Математическое обоснование
Пусть дана вещественная функция , которая определена и непрерывна на рассматриваемом участке. Необходимо найти вещественный корень рассматриваемой функции.
Вывод уравнения основано на методе простых итераций, в соответствии с которым уравнение приводят к эквивалентному уравнению при любой функции . Введем понятие сжимающего отображения, которое определяется соотношением .
Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Данное требование означает, что корень функции должен соответствовать экстремуму функции .
Производная сжимающего отображения определяется в следующем виде:
Выразим из данного выражение переменную при условии принятого ранее утверждения о том, что при необходимо обеспечить условие . В результате получим выражение для определения переменной :
С учетом этого сжимающая функция прием следующий вид:
Таким образом, алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:
Алгоритм нахождения корня нелинейного уравнения по методу Ньютона для уравнения с одной переменной
1. Задать начальную точку приближенного значения корня функции , а также погрешность расчета (малое положительное число ) и начальный шаг итерации ( ).
2. Выполнить расчет приближенного значения корня функции в соответствии с формулой:
3. Проверяем приближенное значение корня на предмет заданной точности, в случае:
— если разность двух последовательных приближений станет меньше заданной точности , то итерационный процесс заканчивается.
— если разность двух последовательных приближений не достигает необходимой точности , то необходимо продолжить итерационный процесс и перейти к п.2 рассматриваемого алгоритма.
Пример решения уравнений
по методу Ньютона для уравнения с одной переменной
В качестве примера, рассмотрим решение нелинейного уравнения методом Ньютона для уравнения с одной переменной . Корень необходимо найти с точностью в качестве первого приближения .
Вариант решения нелинейного уравнения в программном комплексе MathCAD представлен на рисунке 3.
Результаты расчетов, а именно динамика изменения приближенного значения корня, а также погрешности расчета от шага итерации представлены в графической форме (см. рис.2).
Рис.2 . Результаты расчета по методу Ньютона для уравнения с одной переменной
Для обеспечения заданной точности при поиске приближенного значения корня уравнения в диапазоне необходимо выполнить 4 итерации. На последнем шаге итерации приближенное значение корня нелинейного уравнения будет определяться значением: .
Рис.3 . Листинг программы в MathCad
Модификации метода Ньютона для уравнения с одной переменной
Существует несколько модификаций метода Ньютона, которые направлены на упрощение вычислительного процесса.
Упрощенный метод Ньютона
В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что ведет к увеличению вычислительных затрат. Для уменьшения затрат, связанных с вычислением производной на каждом шаге расчета, можно произвести замену производной f’( xn ) в точке xn в формуле на производную f’(x0) в точке x0. В соответствии с данным методом расчета приближенное значение корня определяется по следующей формуле:
Таким образом, на каждом шаге расчета строятся прямые , которые параллельны касательной к кривой y=f(x) в точке B0 (см. рис.4). Преимуществом данного метода является то, что производная функции вычисляется один раз.
Разностный метод Ньютона
В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции заменить разностным отношением (приближенным значением):
В результате приближенное значение корня функции f(x) будет определяться выражением разностного метода Ньютона:
Двух шаговый метод Ньютона
В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции заменить разностным отношением (приближенным значением):
В результате приближенное значение корня функции f(x) будет определяться следующим выражением:
Метод секущих является двух шаговым, то есть новое приближение определяется двумя предыдущими итерациями и . В методе необходимо задавать два начальных приближения и . Скорость сходимости метода будет линейной.
Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.
Видео:Метод касательных (алгоритм Ньютона) на C#Скачать
VMath
Инструменты сайта
Основное
Навигация
Информация
Действия
Содержание
Вспомогательная страница к разделу ☞ ПОЛИНОМ ОДНОЙ ПЕРЕМЕННОЙ
Видео:Численное решение уравнений, урок 4/5. Метод касательных (Ньютона)Скачать
Метод Ньютона решения уравнения
Пусть $ f_(x) $ — полином с вещественными коэффициентами, $ deg f ge 2 $, и $ lambda $ обозначает его корень, лежащий на интервале $ ]a,b[ $. Пусть, кроме того, $ f^(x)ne 0 $ на указанном интервале, тогда $ lambda_ $ — единственный корень полинома на $ ]a,b[ $. При произвольном $ x_0 in ]a,b[ $ выпишем формулу Тейлора $$f(x)=f(x_0)+f'(x_0)(x-x_0)+dots ,$$ ограничившись в ней двумя первыми слагаемыми. Вместо уравнения $ f_(x)=0 $ будем рассматривать его линейное приближение $ f(x_0)+f'(x_0)(x-x_0)=0 $. Утверждается, что достаточно часто (в смысле выбора точки $ x_ $) решение этого уравнения, т.е. точка $$ x_1= x_-frac<f(x_)><f'(x_)> $$ лежит ближе к (неизвестному нам заранее) значению корня $ lambda $, чем точка $ x_ $. Можно утверждать и большее: при подходящем выборе $ x_ $ итерационная последовательность $$ left< x_j= x_-frac<f(x_)><f'(x_)> right>_^ $$ будет сходиться к $ lambda_ $ при $ jto + infty $.
Метод поиска вещественного решения уравнения $ f(x)=0 $ построением указанной последовательности известен как метод Ньютона или же (см. ☟ ПУНКТ) как метод каcательных.
Биографические заметки о Ньютоне ☞ ЗДЕСЬ.
Теорема 1. Если полином $ f_(x) $ не имеет кратных корней и последовательность $ _^ $ сходится к конечному пределу, то этот предел является корнем $ f_(x) $.
Доказательство. Пусть $$ lim_ x_j = A , $$ тогда и $$lim_ x_ = A . $$ По непрерывности $ f_(x) $ и $ f^(x) $ будет выполнено $$lim_ f(x_)= f(A) , quad lim_ f^(x_)= f^(A) , $$ и, по предположению, числа $ f(A) $ и $ f^(A) $ не могут одновременно обращаться в нуль. Если бы число $ f^(A) $ было равно нулю, то последовательность $ _^ $ была бы неограниченной, а у нее же, по предположению теоремы, существует конечный предел. Следовательно $ f^(A)ne 0 $. При переходе в равенстве $$ x_j= x_-frac<f(x_)><f'(x_)> $$ к пределу при $ jto + infty $, равенство должно сохраниться: $$ A= A- frac quad Rightarrow quad frac=0 quad Rightarrow quad f(A)=0 .$$ ♦
Наша задача теперь заключается в подборе такого стартового (начального) значения $ x_ $, чтобы последовательность $ _^ $ сходилась к определенному корню полинома, например, лежащему на данном интервале $ [a,b] $. Нам потребуется следующий результат из математического анализа.
Теорема 2. Если функция $ F_(x) $ и ее производные $ F^(x) $ и $ F^(x) $ непрерывны в $ ]a,b[ $, то для любых значений $ x_ $ и $ x_ $ из этого интервала будет справедлива формула Тейлора с остаточным членом в форме Лагранжа:
$$ F(x)equiv F(x_0)+F^(x_0)(x-x_0)+ frac<F^(c)>(x-x_0)^2 $$ где значение $ c_ $ принадлежит интервалу $ ]x_0,x[ $ при $ x>x_0 $ или $ ]x,x_0[ $ при $ x 0 $ и $ f^(x)>0 $ на $ ]a,b[ $, иначе говоря, функция возрастает и выпукла вниз; согласно правилу выбора начальной точки $ x_ $ мы должны взять ее из условия $ f(x_0)>0 $, т.е. ближе к правому концу интервала. Имеем, следовательно $ x_0>lambda $. Докажем, что значение $ x_ $, вычисляемое по формуле $$ x_1= x_-frac<f(x_)><f'(x_)> , $$ будет удовлетворять условиям $ lambda lambda $ запишем для $ f_(x) $ формулу Тейлора с остаточным членом в форме Лагранжа: $$ f(x)equiv f(x_0)+f^(x_0)(x-x_0)+ frac<f^(c)>(x-x_0)^2 . $$ Подставим вместо $ x_ $ значение корня $ lambda_ $: $$ 0=f(x_0)+f^(x_0)(lambda-x_0)+ frac<f^(c)>(lambda-x_0)^2 , $$ перенесем первые два слагаемые в левую часть и поделим получившееся равенство на $ f^(x_0) $: $$ left(x_-frac<f(x_)><f^(x_)> right) — lambda = frac<f^(c)><2!, f^(x_)>(lambda-x_0)^2 . $$ В левой части получили $ x_1 — lambda $. По предположению, $ f^(c)>0 $ и $ f^(x_)>0 $, следовательно правая часть неотрицательна. Итак, $ x_1 > lambda $.
Совершенно аналогично доказывается, что $ lambda ♦
При выполнении условий теоремы $3$ скорость сходимости последовательности метода Ньютона оценивается неравенством
Пример. Найти положительный корень полинома $ x^5-4, x -2 $ с точностью до $ 0.001 $.
Решение. На основании правила знаков Декарта делаем вывод, что $ f_(x) $ имеет положительный корень и этот корень единствен. Далее, $ f(1) 0 $ и, на основании теоремы Больцано, этот корень принадлежит интервалу $ ]1,2[ $. Далее, $$f^(x)=5,x^4-4>0, f^(x)>0 quad npu quad xin ]1,2[ ,$$ т.е. мы находимся точно в условиях случая, рассмотренного в доказательстве теоремы $ 3_ $. Запускаем итерационную последовательность, полагая $ x_0=2 $: $$x_1 =x_0-frac=frac approx 1.710526316 . $$ Далее, последовательное применение формулы метода Ньютона дает: $$ begin x_2 &= x_1- displaystyle frac =frac &approx 1.561019630 , \ x_3 &= x_2- displaystyle frac & approx 1.521115751 , \ x_4 & & approx 1.518522614 , \ x_5 & & approx 1.518512153 . end $$
Ответ. $ lambda approx 1.518 $.
Видео:15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать
Геометрическая интерпретация: метод касательных
Геометрическая интерпретация метода Ньютона заключается в следующем. Для определенности предположим, что $ f^(x)>0,, f^(x)>0 $ на $ ]a,b[ $. Возьмем $ x_ $ ближе к правому концу указанного интервала, т.е. пусть $ f(x_0)>0 $. Проведем касательную к графику функции $ y=f(x) $ в точке $ (x_0,f(x_0)) $: $$frac=f^(x_0) $$ и найдем ее точку пересечения $ (x_1,y_1) $ с осью абсцисс.
Легко вычислить координаты этой точки: $$y_1=0, x_1=x_0 — frac<f^(x_0)> ;$$ иначе говоря, $ x_ $ определяется как раз по формуле метода Ньютона. Из рисунка видно (а в теореме $ 3_ $ строго доказывается), что точка $ x_ $ лежит ближе к неизвестному нам значению корня $ lambda_ $ полинома $ f_(x) $, чем точка $ x_ $. Поэтому имеет смысл повторить процедуру: построить касательную к графику в точке $ (x_1,f(x_)) $, найти ее пересечение $ (x_,y_2) $ с осью абсцисс и т.д.
В конце концов, монотонно убывающая и ограниченная снизу последовательность точек $ x_0,x_1,x_2,dots $ попадет в сколь угодно малую окрестность $ lambda_ $. Эти геометрические соображения обосновывают и другое название метода Ньютона; он также называется методом касательных.
Выбор стартового значения ближе к правому концу интервала обеспечивает монотонное убывание последовательности $ _^ $ также в случае когда на этом интервале имеют место неравенства $ f^(x) 0 quad u quad f^(x)>0,, f^(x) МЕТОД НЬЮТОНА .
Пример. Найти корень полинома $ x^5-4, x -2 $ на интервале $[1,2] $ с точностью до $ 0.001 $.
Решение. При выборе $ x_0 =2 $ требуемая точность достигается за три итерации $$ x_1 = frac approx 1.622321, x_2approx 1.521381, x_3 approx 1.518512 , . $$
По сравнению с пятью итерациями метода Ньютона — существенный выигрыш. Проблема только в том, что каждая итерация теперь стоит дороже: она более сложна при вычислении.
Видео:11 Метод Ньютона (Метод касательных) Mathcad Численные методы решения нелинейного уравненияСкачать
Метод Галлея (касательных гипербол)
Геометрическая идея, лежащая в основе метода Галлея 1) , обобщает идею метода касательных. К графику функции $ y=f(x) $ строится гипербола вида $$ (x-alpha)(y-beta)=k , $$ имеющая в точке $ (x_0,f(x_0)) $ касание с графиком второго порядка, т.е. значения функции $$ y=beta+frac , $$ а также значения ее первой и второй производных в точке $ x_0 $ совпадают с соответствующими значениями для функции $ f_(x) $. В качестве очередного приближения $ x_ $ к неизвестному корню $ lambda_ $ берется точка пересечения гиперболы с осью абсцисс. $$ left<x_j=x_- frac<f(x_)f^(x_)><left[f^(x_)right]^2-fracf(x_)f^(x_)> right>_^ . $$
Видео:Численный метод Ньютона в ExcelСкачать
Обобщения
Видео:Метод Касательных - ВизуализацияСкачать
Целые числа
Задача. Для заданного натурального числа $ B_ $ установить является ли оно полным квадратом и в этом случае определить $ sqrt $.
Теорема. Пусть $ B_0 $ — произвольное целое такое, что $ B_0^2>B $. Последовательность
$$ B_j = begin leftlfloor begin B_+ leftlfloor displaystyle frac<B_> rightrfloor_ \ hline 2 end rightrfloor \ end quad npu jin , $$ монотонно убывая, сойдется за конечное число шагов к значению $ leftlfloorsqrt rightrfloor $, если только число $ B+1 $ не является полным квадратом. Здесь $ lfloor rfloor $ означает целую часть числа.
Доказательство ☞ ЗДЕСЬ.
Видео:Вычислительная математика. Метод касательных на Python(1 практика).Скачать
Комплексные числа
Формально ничто не мешает нам применить последовательность метода Ньютона для поиска мнимых корней полинома $ f_(x) $. Можно доказать комплексный аналог теоремы $ 3_ $ , а также показать сходимость итерационной последовательности к конкретному корню полинома при условии, что стартовое (начальное) значение выбирается достаточно близко к искомому корню. Интересно посмотреть на поведение последовательности уже для самых простых случаев. Пусть, например, $$ f(z)=z^3-1 , , $$ т.е. наша задача заключается в поиске трех корней кубических из $ 1_ $: $$1,quad -frac + mathbf i frac<sqrt> ,quad -frac — mathbf i frac<sqrt> . $$ Комплексный вариант последовательности метода Ньютона: $$ left<z_j = frac<2,z_^3+1><3,z_^2> right>_^ $$ при задании стартового значения $ z_ $ «выведет» нас при $ jto infty $ к какому-то значению корня. Итак, вся комплексная плоскость может быть поделена на три «области притяжения» каждого из корней. Раскрасим эти множества в разные цвета. Какова будет граница между этими областями? — Оказывается, эта граница имеет так называемую фрактальную структуру; и каждая граничная точка любой области является также граничной для двух других областей 2) .
Если начальную точку $ z_0 $ выбрать на этой границе, то последовательность метода Ньютона будет бесконечно долго скакать по ней, не сходясь ни к какому корню. При выборе $ z_0 $ близко к границе, мы, теоретически, должны получить последовательность, сходящуюся к какому-то корню. Однако ошибки округления, накапливающиеся с каждой итерацией, могут снова привести к непредсказуемости ни качества сходимости (к конкретному корню) ни количества итераций, требуемых для достижения заданной точности.
Видео:Решение нелинейного уравнения методом Ньютона (касательных) (программа)Скачать
Системы нелинейных уравнений с несколькими неизвестными
Проблемы сходимости комплексного варианта метода Ньютона, отмеченные в предыдущем пункте, наследуются и обобщением метода Ньютона для задачи решения системы нелинейных уравнений с несколькими неизвестными. Действительно, задача поиска комплексных корней уравнения $ z^3-1=0 $ эквивалентна поиску вещественных решений системы уравнений $$ x^3-3, xy^2-1=0, 3, x^2y-y^3=0 , . $$
Развитие метода Ньютона для решения системы уравнений
$$ f(x,y)=0, g(x,y)=0 $$ при $ f, g $ — произвольных полиномах с вещественными коэффициентами обсуждается ☞ ЗДЕСЬ
Видео:Алгоритмы С#. Метод Ньютона для решения систем уравненийСкачать
Задачи
Видео:1 4 Метод Ньютона касательныхСкачать
Источники
[1]. Березин И.С., Жидков Н.П. Методы вычислений. Т.2. М.Физматгиз. 1960
🌟 Видео
Метод Ньютона (касательных) и хорд Численное решение уравнения c++Скачать
Метод касательных для приближённого решения алгебраических уравненийСкачать
Метод Ньютона (касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать
10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравненияСкачать
Метод Ньютона | Лучший момент из фильма Двадцать одно 21Скачать
Метод касательныхСкачать
Численные методы - Занятие 2: Численное решение уравнения методом НьютонаСкачать