Решение уравнения функции на отрезке

Видео:Наибольшее и наим. значения функции на отрезкеСкачать

Наибольшее  и наим.  значения функции на отрезке

Решение уравнения функции на отрезке

Определение 1. Пусть функция определена в некоторой окрестности точки . Придавая независимой переменной приращение х , невыводящее за пределы окрестности, получим новое значение + х , также принадлежащее окрестности . Тогда значение функции заменится новым значением , то есть получит приращение

Если существует предел отношения приращении функции у к вызвавшему его приращению независимой переменной х при стремлении х к 0, т.е. , то он называется производной функции в точке х и обозначается .

Операция вычисления производной называется операцией дифференцирования.

Образно говоря, равенство означает, что производная функции в точке х равна скорости изменения переменной у относительно переменой в указанной точке.

Определение 2. Функция , заданная в некоторой окрестности точки R называется дифференцируемой в этой точке, если ее приращение , представимо в этой окрестности в виде , где — постоянная, О( х) — бесконечно малая более высокого порядка, чем х.

Линейная функция (аргумента х ) называется дифференциалом функции в точке х и обозначается df(x или dy .

Таким образом, у = dy + О( х) , .

Можно доказать следующую теорему:

Теорема 1. Функция дифференцируема в некоторой точке в том и только том случае, когда в этой точке имеет конечную производную.

Учитывая определение 2 и утверждение теоремы, в качестве определения дифференцируемой функции может быть принято следующее:

Определение 3. Если функция у имеет производную в точке , то говорят, что при данном значении функция дифференцируема.

То есть существование производной функции в точке х равносильно ее дифференцируемости в этой точке.

Теорема 2 . Если функция дифференцируема в некоторой точке, то она непрерывна в этой точке.

Обратная теорема не верна: существуют функции, непрерывные в некоторой точке, но не дифференцируемые в этой точке.

Если функция определена в некоторой окрестности точки , принимает в этой точке наибольшее (наименьшее) в рассматриваемой окрестности значение и имеет в точке х производную, то эта производная равна нулю.

1) непрерывна на отрезке [ ]

2) имеет в каждой точке интервала конечную производную,

3) принимает равные значения на концах отрезка [ ], то есть f(a) = f(b) , то существует, по крайней мере, одна такая точка , что .

Если функция непрерывна на отрезке [ ] и в каждой точке интервала имеет конечную или определенного знака бесконечную производную, то существует такая точка , что f(b) — f(a) = f ( (b — a).

Используя теорему Лагранжа, можно доказать следующие теоремы:

Условие постоянства функции

Теорема 3. (Условие постоянства функции) Пусть функция определена и непрерывна на промежутке Х и во всех его внутренних точках имеет конечную производную . Для того, чтобы была на указанном отрезке постоянной, необходимое и достаточное условие внутри Х.

Если две функции и определены и непрерывны в промежутке Х и внутри него имеют конечные производные и , причем (внутри Х), то эти функции на всем промежутке Х отличаются лишь на постоянную: (C = const).

Теорема 4. (Признак монотонности функций)

Для того чтобы дифференцируемая на интервале функция возрастала (убывала) на этом интервале, необходимо и достаточно, чтобы ее производная была во всех точках интервала неотрицательна (неположительна).

Если производная функция во всех точках интервала положительна (отрицательна), то функция строго возрастает (строго убывает) на этом интервале.

Если функции и непрерывны на отрезке [ ] и в каждой точке интервала имеют конечные производные , , причем для , а f(а) g(а) , тогда для любой точки выполняется неравенство .

На основании утверждения теоремы 5 для того, чтобы доказать неравенство f(x) 0 при х 0 , достаточно доказать, что f(0) 0 и (х) 0 при х 0 . А для того, чтобы доказать неравенство при , можно воспользоваться второй производной и при и т.д.

С помощью производной можно также определить число корней того или иного уравнения. Один из возможных приемов основан на следующей теореме:

Если функция определена и непрерывна на отрезке и во всех его внутренних точках имеет конечную производную, то между любыми двумя корнями этой функции, расположенными на отрезке, имеется хотя бы 1 корень ее производной.

Рассмотренные теоретические положения используются при решении задач.

Задача 1. Докажите тождество 3 arcsin x — arccos( 3 4 ) = , если .

Решение. Рассмотрим функцию 3 arcsinx — arccos( 3 4 на отрезке [ ]. Докажем, что f(х) = с, с = const. Для этого достаточно доказать, что (т.3)

Если , то следовательно, и . Для определения значения вычислим значение функции в произвольной точке интервала . Пусть , тогда и .

Вычислим значение функции на концах заданного отрезка.

Таким образом, тождество верно при любом .

Задача 2. Найдите сумму .

Решение. Представив искомую сумму в виде , заметим, что .

Используя формулу суммы членов геометрической прогрессии, получим,

Итак, искомая сумма имеет вид .

Используя полученную формулу, можно, например, вычислить

Задача 3. Найдите сумму:

Решение. Используя результат, полученный в примере 2, заметим, что

Задача 4. Решите уравнение:

Решение. Очевидно, что — корень уравнения. Докажем, что уравнение других корней не имеет. Рассмотрим функцию

Для функции точка является точкой минимума, в которой функция принимает наименьшее значение. Значит, для всех , отличных от нуля, > .

Задача 5. Решите уравнение:

Преобразуем уравнение к виду:

Рассмотрим функции и при .

Сравним множества значений этих функций. Очевидно, что .

Найдем с использованием производной.

Функция непрерывна на промежутке и имеет на нем единственную критическую точку , в которой достигает своего наибольшего значения.

Следовательно, решение уравнения находим из решения системы:

Рассмотрим функцию , при .

Функция непрерывна на промежутке и является возрастающей, . — является точкой минимума функции , в которой функция принимает наименьшее значение, ровное нулю. Следовательно, для всех > .

Таким образом, исходное уравнение имеет единственный корень .

Задача 6. Докажите, что уравнение может иметь не более трех различных корней.

Решение. Рассмотрим функцию . Функция является дифференцируемой на R . Предположим, что функция имеет более трех различных корней, например, четыре. Тогда должна иметь не более трех различных корней (т.6), то есть обращается в нуль не менее трех раз.

Функция дифференцируема на R . Ее производная обращается в нуль не менее двух раз. Тогда имеет не менее двух нулей, а ее производная не менее одного нуля. Но функция нулей не имеет. Получили противоречие. Значит, сделанное предположение неверно, функция более трех различных корней иметь не может. Таким образом, заданное уравнение может иметь не более трех различных корней.

Производную можно использовать при доказательстве и решении неравенств.

Задача 7. Доказать, что при 0$»>.

Доказательство. Докажем справедливость следующих неравенств:

0. end —>

0. end»>(1)

Для доказательства неравенства (2) рассмотрим функцию

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Наибольшее и наименьшее значение функции

На практике довольно часто приходится использовать производную для того, чтобы вычислить самое большое и самое маленькое значение функции. Мы выполняем это действие тогда, когда выясняем, как минимизировать издержки, увеличить прибыль, рассчитать оптимальную нагрузку на производство и др., то есть в тех случаях, когда нужно определить оптимальное значение какого-либо параметра. Чтобы решить такие задачи верно, надо хорошо понимать, что такое наибольшее и наименьшее значение функции.

Обычно мы определяем эти значения в рамках некоторого интервала x , который может в свою очередь соответствовать всей области определения функции или ее части. Это может быть как отрезок [ a ; b ] , так и открытый интервал ( a ; b ) , ( a ; b ] , [ a ; b ) , бесконечный интервал ( a ; b ) , ( a ; b ] , [ a ; b ) либо бесконечный промежуток — ∞ ; a , ( — ∞ ; a ] , [ a ; + ∞ ) , ( — ∞ ; + ∞ ) .

В этом материале мы расскажем, как вычисляется наибольшее и наименьшее значение явно заданной функции с одной переменной y=f(x) y = f ( x ) .

Видео:Математический анализ, 13 урок, Наибольшее и наименьшее значение функции на отрезкеСкачать

Математический анализ, 13 урок, Наибольшее и наименьшее значение функции на отрезке

Основные определения

Начнем, как всегда, с формулировки основных определений.

Наибольшее значение функции y = f ( x ) на некотором промежутке x – это значение m a x y = f ( x 0 ) x ∈ X , которое при любом значении x x ∈ X , x ≠ x 0 делает справедливым неравенство f ( x ) ≤ f ( x 0 ) .

Наименьшее значение функции y = f ( x ) на некотором промежутке x – это значение m i n x ∈ X y = f ( x 0 ) , которое при любом значении x ∈ X , x ≠ x 0 делает справедливым неравенство f(X f ( x ) ≥ f ( x 0 ) .

Данные определения являются достаточно очевидными. Еще проще можно сказать так: наибольшее значение функции – это ее самое большое значение на известном интервале при абсциссе x 0 , а наименьшее – это самое маленькое принимаемое значение на том же интервале при x 0 .

Стационарными точками называются такие значения аргумента функции, при которых ее производная обращается в 0 .

Зачем нам нужно знать, что такое стационарные точки? Для ответа на этот вопрос надо вспомнить теорему Ферма. Из нее следует, что стационарная точка – это такая точка, в которой находится экстремум дифференцируемой функции (т.е. ее локальный минимум или максимум). Следовательно, функция будет принимать наименьшее или наибольшее значение на некотором промежутке именно в одной из стационарных точек.

Еще функция может принимать наибольшее или наименьшее значение в тех точках, в которых сама функция является определенной, а ее первой производной не существует.

Первый вопрос, который возникает при изучении этой темы: во всех ли случаях мы может определить наибольшее или наименьшее значение функции на заданном отрезке? Нет, мы не можем этого сделать тогда, когда границы заданного промежутка будут совпадать с границами области определения, или если мы имеем дело с бесконечным интервалом. Бывает и так, что функция в заданном отрезке или на бесконечности будет принимать бесконечно малые или бесконечно большие значения. В этих случаях определить наибольшее и/или наименьшее значение не представляется возможным.

Более понятными эти моменты станут после изображения на графиках:

Видео:Находим решение тригонометрического уравнения на интервале Алгебра 10 классСкачать

Находим решение тригонометрического уравнения на интервале Алгебра 10 класс

Наибольшее и наименьшее значение функции на отрезке

Решение уравнения функции на отрезке

Первый рисунок показывает нам функцию, которая принимает наибольшее и наименьшее значения ( m a x y и m i n y ) в стационарных точках, расположенных на отрезке [ — 6 ; 6 ] .

Разберем подробно случай, указанный на втором графике. Изменим значение отрезка на [ 1 ; 6 ] и получим, что наибольшее значение функции будет достигаться в точке с абсциссой в правой границе интервала, а наименьшее – в стационарной точке.

На третьем рисунке абсциссы точек представляют собой граничные точки отрезка [ — 3 ; 2 ] . Они соответствуют наибольшему и наименьшему значению заданной функции.

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Наибольшее и наименьшее значение функции на открытом интервале

Решение уравнения функции на отрезке

Теперь посмотрим на четвертый рисунок. В нем функция принимает m a x y (наибольшее значение) и m i n y (наименьшее значение) в стационарных точках на открытом интервале ( — 6 ; 6 ) .

Если мы возьмем интервал [ 1 ; 6 ) , то можно сказать, что наименьшее значение функции на нем будет достигнуто в стационарной точке. Наибольшее значение нам будет неизвестно. Функция могла бы принять наибольшее значение при x , равном 6 , если бы x = 6 принадлежала интервалу. Именно этот случай нарисован на графике 5 .

На графике 6 наименьшее значение данная функция приобретает в правой границе интервала ( — 3 ; 2 ] , а о наибольшем значении мы не можем сделать определенных выводов.

Видео:Находим решение тригонометрического уравнения на целочисленном отрезке Алгебра 10 классСкачать

Находим решение тригонометрического уравнения на целочисленном отрезке Алгебра 10 класс

Наибольшее и наименьшее значение функции на бесконечности

Решение уравнения функции на отрезке

На рисунке 7 мы видим, что функция будет иметь m a x y в стационарной точке, имеющей абсциссу, равную 1 . Наименьшего значения функция достигнет на границе интервала с правой стороны. На минус бесконечности значения функции будут асимптотически приближаться к y = 3 .

Если мы возьмем интервал x ∈ 2 ; + ∞ , то увидим, что заданная функция не будет принимать на нем ни наименьшего, ни наибольшего значения. Если x стремится к 2 , то значения функции будут стремиться к минус бесконечности, поскольку прямая x = 2 – это вертикальная асимптота. Если же абсцисса стремится к плюс бесконечности, то значения функции будут асимптотически приближаться к y = 3 . Именно этот случай изображен на рисунке 8 .

Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

Как найти наибольшее и наименьшее значение непрерывной функции на заданном отрезке

В этом пункте мы приведем последовательность действий, которую нужно выполнить для нахождения наибольшего или наименьшего значения функции на некотором отрезке.

  1. Для начала найдем область определения функции. Проверим, входит ли в нее заданный в условии отрезок.
  2. Теперь вычислим точки, содержащиеся в данном отрезке, в которых не существует первой производной. Чаще всего их можно встретить у функций, аргумент которых записан под знаком модуля, или у степенных функций, показатель которых является дробно рациональным числом.
  3. Далее выясним, какие стационарные точки попадут в заданный отрезок. Для этого надо вычислить производную функции, потом приравнять ее к 0 и решить получившееся в итоге уравнение, после чего выбрать подходящие корни. Если у нас не получится ни одной стационарной точки или они не будут попадать в заданный отрезок, то мы переходим к следующему шагу.
  4. Определим, какие значения будет принимать функция в заданных стационарных точках (если они есть), или в тех точках, в которых не существует первой производной (если они есть), либо же вычисляем значения для x = a и x = b .
  5. 5. У нас получился ряд значений функции, из которых теперь нужно выбрать самое больше и самое маленькое. Это и будут наибольшее и наименьшее значения функции, которые нам нужно найти.

Посмотрим, как правильно применить этот алгоритм при решении задач.

Условие: задана функция y = x 3 + 4 x 2 . Определите ее наибольшее и наименьшее значение на отрезках [ 1 ; 4 ] и [ — 4 ; — 1 ] .

Решение:

Начнем с нахождения области определения данной функции. В этом случае ей будет множество всех действительных чисел, кроме 0 . Иными словами, D ( y ) : x ∈ ( — ∞ ; 0 ) ∪ 0 ; + ∞ . Оба отрезка, заданных в условии, будут находиться внутри области определения.

Теперь вычисляем производную функции согласно правилу дифференцирования дроби:

y ‘ = x 3 + 4 x 2 ‘ = x 3 + 4 ‘ · x 2 — x 3 + 4 · x 2 ‘ x 4 = = 3 x 2 · x 2 — ( x 3 — 4 ) · 2 x x 4 = x 3 — 8 x 3

Мы узнали, что производная функции будет существовать во всех точках отрезков [ 1 ; 4 ] и [ — 4 ; — 1 ] .

Теперь нам надо определить стационарные точки функции. Сделаем это с помощью уравнения x 3 — 8 x 3 = 0 . У него есть только один действительный корень, равный 2 . Он будет стационарной точкой функции и попадет в первый отрезок [ 1 ; 4 ] .

Вычислим значения функции на концах первого отрезка и в данной точке, т.е. для x = 1 , x = 2 и x = 4 :

y ( 1 ) = 1 3 + 4 1 2 = 5 y ( 2 ) = 2 3 + 4 2 2 = 3 y ( 4 ) = 4 3 + 4 4 2 = 4 1 4

Мы получили, что наибольшее значение функции m a x y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 будет достигнуто при x = 1 , а наименьшее m i n y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 – при x = 2 .

Второй отрезок не включает в себя ни одной стационарной точки, поэтому нам надо вычислить значения функции только на концах заданного отрезка:

y ( — 1 ) = ( — 1 ) 3 + 4 ( — 1 ) 2 = 3

Значит, m a x y x ∈ [ — 4 ; — 1 ] = y ( — 1 ) = 3 , m i n y x ∈ [ — 4 ; — 1 ] = y ( — 4 ) = — 3 3 4 .

Ответ: Для отрезка [ 1 ; 4 ] — m a x y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 , m i n y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 , для отрезка [ — 4 ; — 1 ] — m a x y x ∈ [ — 4 ; — 1 ] = y ( — 1 ) = 3 , m i n y x ∈ [ — 4 ; — 1 ] = y ( — 4 ) = — 3 3 4 .

Решение уравнения функции на отрезке

Видео:Решение неравенства методом интерваловСкачать

Решение неравенства методом интервалов

Как найти наибольшее и наименьшее значение непрерывной функции на открытом или бесконечном интервале

Перед тем как изучить данный способ, советуем вам повторить, как правильно вычислять односторонний предел и предел на бесконечности, а также узнать основные методы их нахождения. Чтобы найти наибольшее и/или наименьшее значение функции на открытом или бесконечном интервале, выполняем последовательно следующие действия.

  1. Для начала нужно проверить, будет ли заданный интервал являться подмножеством области определения данной функции.
  2. Определим все точки, которые содержатся в нужном интервале и в которых не существует первой производной. Обычно они бывают у функций, где аргумент заключен в знаке модуля, и у степенных функций с дробно рациональным показателем. Если же эти точки отсутствуют, то можно переходить к следующему шагу.
  3. Теперь определим, какие стационарные точки попадут в заданный промежуток. Сначала приравняем производную к 0 , решим уравнение и подберем подходящие корни. Если у нас нет ни одной стационарной точки или они не попадают в заданный интервал, то сразу переходим к дальнейшим действиям. Их определяет вид интервала.
  • Если интервал имеет вид [ a ; b ) , то нам надо вычислить значение функции в точке x = a и односторонний предел lim x → b — 0 f ( x ) .
  • Если интервал имеет вид ( a ; b ] , то нам надо вычислить значение функции в точке x = b и односторонний предел lim x → a + 0 f ( x ) .
  • Если интервал имеет вид ( a ; b ) , то нам надо вычислить односторонние пределы lim x → b — 0 f ( x ) , lim x → a + 0 f ( x ) .
  • Если интервал имеет вид [ a ; + ∞ ) , то надо вычислить значение в точке x = a и предел на плюс бесконечности lim x → + ∞ f ( x ) .
  • Если интервал выглядит как ( — ∞ ; b ] , вычисляем значение в точке x = b и предел на минус бесконечности lim x → — ∞ f ( x ) .
  • Если — ∞ ; b , то считаем односторонний предел lim x → b — 0 f ( x ) и предел на минус бесконечности lim x → — ∞ f ( x )
  • Если же — ∞ ; + ∞ , то считаем пределы на минус и плюс бесконечности lim x → + ∞ f ( x ) , lim x → — ∞ f ( x ) .
  1. В конце нужно сделать вывод на основе полученных значений функции и пределов. Здесь возможно множество вариантов. Так, если односторонний предел равен минус бесконечности или плюс бесконечности, то сразу понятно, что о наименьшем и наибольшем значении функции сказать ничего нельзя. Ниже мы разберем один типичный пример. Подробные описания помогут вам понять, что к чему. При необходимости можно вернуться к рисункам 4 — 8 в первой части материала.

Пример 2

Условие: дана функция y = 3 e 1 x 2 + x — 6 — 4 . Вычислите ее наибольшее и наименьшее значение в интервалах — ∞ ; — 4 , — ∞ ; — 3 , ( — 3 ; 1 ] , ( — 3 ; 2 ) , [ 1 ; 2 ) , 2 ; + ∞ , [ 4 ; + ∞ ) .

Решение

Первым делом находим область определения функции. В знаменателе дроби стоит квадратный трехчлен, который не должен обращаться в 0 :

x 2 + x — 6 = 0 D = 1 2 — 4 · 1 · ( — 6 ) = 25 x 1 = — 1 — 5 2 = — 3 x 2 = — 1 + 5 2 = 2 ⇒ D ( y ) : x ∈ ( — ∞ ; — 3 ) ∪ ( — 3 ; 2 ) ∪ ( 2 ; + ∞ )

Мы получили область определения функции, к которой принадлежат все указанные в условии интервалы.

Теперь выполним дифференцирование функции и получим:

y ‘ = 3 e 1 x 2 + x — 6 — 4 ‘ = 3 · e 1 x 2 + x — 6 ‘ = 3 · e 1 x 2 + x — 6 · 1 x 2 + x — 6 ‘ = = 3 · e 1 x 2 + x — 6 · 1 ‘ · x 2 + x — 6 — 1 · x 2 + x — 6 ‘ ( x 2 + x — 6 ) 2 = — 3 · ( 2 x + 1 ) · e 1 x 2 + x — 6 x 2 + x — 6 2

Следовательно, производные функции существуют на всей области ее определения.

Перейдем к нахождению стационарных точек. Производная функции обращается в 0 при x = — 1 2 . Это стационарная точка, которая находится в интервалах ( — 3 ; 1 ] и ( — 3 ; 2 ) .

Вычислим значение функции при x = — 4 для промежутка ( — ∞ ; — 4 ] , а также предел на минус бесконечности:

y ( — 4 ) = 3 e 1 ( — 4 ) 2 + ( — 4 ) — 6 — 4 = 3 e 1 6 — 4 ≈ — 0 . 456 lim x → — ∞ 3 e 1 x 2 + x — 6 = 3 e 0 — 4 = — 1

Поскольку 3 e 1 6 — 4 > — 1 , значит, m a x y x ∈ ( — ∞ ; — 4 ] = y ( — 4 ) = 3 e 1 6 — 4 . Это не дает нам возможности однозначно определить наименьшее значение функции. Мы можем только сделать вывод, что внизу есть ограничение — 1 , поскольку именно к этому значению функция приближается асимптотически на минус бесконечности.

Особенностью второго интервала является то, что в нем нет ни одной стационарной точки и ни одной строгой границы. Следовательно, ни наибольшего, ни наименьшего значения функции мы вычислить не сможем. Определив предел на минус бесконечности и при стремлении аргумента к — 3 с левой стороны, мы получим только интервал значений:

lim x → — 3 — 0 3 e 1 x 2 + x — 6 — 4 = lim x → — 3 — 0 3 e 1 ( x + 3 ) ( x — 3 ) — 4 = 3 e 1 ( — 3 — 0 + 3 ) ( — 3 — 0 — 2 ) — 4 = = 3 e 1 ( + 0 ) — 4 = 3 e + ∞ — 4 = + ∞ lim x → — ∞ 3 e 1 x 2 + x — 6 — 4 = 3 e 0 — 4 = — 1

Значит, значения функции будут расположены в интервале — 1 ; + ∞

Чтобы найти наибольшее значение функции в третьем промежутке, определим ее значение в стационарной точке x = — 1 2 , если x = 1 . Также нам надо будет знать односторонний предел для того случая, когда аргумент стремится к — 3 с правой стороны:

y — 1 2 = 3 e 1 — 1 2 2 + — 1 2 — 6 — 4 = 3 e 4 25 — 4 ≈ — 1 . 444 y ( 1 ) = 3 e 1 1 2 + 1 — 6 — 4 ≈ — 1 . 644 lim x → — 3 + 0 3 e 1 x 2 + x — 6 — 4 = lim x → — 3 + 0 3 e 1 ( x + 3 ) ( x — 2 ) — 4 = 3 e 1 — 3 + 0 + 3 ( — 3 + 0 — 2 ) — 4 = = 3 e 1 ( — 0 ) — 4 = 3 e — ∞ — 4 = 3 · 0 — 4 = — 4

У нас получилось, что наибольшее значение функция примет в стационарной точке m a x y x ∈ ( 3 ; 1 ] = y — 1 2 = 3 e — 4 25 — 4 . Что касается наименьшего значения, то его мы не можем определить. Все, что нам известно, – это наличие ограничения снизу до — 4 .

Для интервала ( — 3 ; 2 ) возьмем результаты предыдущего вычисления и еще раз подсчитаем, чему равен односторонний предел при стремлении к 2 с левой стороны:

y — 1 2 = 3 e 1 — 1 2 2 + — 1 2 — 6 — 4 = 3 e — 4 25 — 4 ≈ — 1 . 444 lim x → — 3 + 0 3 e 1 x 2 + x — 6 — 4 = — 4 lim x → 2 — 0 3 e 1 x 2 + x — 6 — 4 = lim x → — 3 + 0 3 e 1 ( x + 3 ) ( x — 2 ) — 4 = 3 e 1 ( 2 — 0 + 3 ) ( 2 — 0 — 2 ) — 4 = = 3 e 1 — 0 — 4 = 3 e — ∞ — 4 = 3 · 0 — 4 = — 4

Значит, m a x y x ∈ ( — 3 ; 2 ) = y — 1 2 = 3 e — 4 25 — 4 , а наименьшее значение определить невозможно, и значения функции ограничены снизу числом — 4 .

Исходя из того, что у нас получилось в двух предыдущих вычислениях, мы можем утверждать, что на интервале [ 1 ; 2 ) наибольшее значение функция примет при x = 1 , а найти наименьшее невозможно.

На промежутке ( 2 ; + ∞ ) функция не достигнет ни наибольшего, ни наименьшего значения, т.е. она будет принимать значения из промежутка — 1 ; + ∞ .

lim x → 2 + 0 3 e 1 x 2 + x — 6 — 4 = lim x → — 3 + 0 3 e 1 ( x + 3 ) ( x — 2 ) — 4 = 3 e 1 ( 2 + 0 + 3 ) ( 2 + 0 — 2 ) — 4 = = 3 e 1 ( + 0 ) — 4 = 3 e + ∞ — 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x — 6 — 4 = 3 e 0 — 4 = — 1

Вычислив, чему будет равно значение функции при x = 4 , выясним, что m a x y x ∈ [ 4 ; + ∞ ) = y ( 4 ) = 3 e 1 14 — 4 , и заданная функция на плюс бесконечности будет асимптотически приближаться к прямой y = — 1 .

Сопоставим то, что у нас получилось в каждом вычислении, с графиком заданной функции. На рисунке асимптоты показаны пунктиром.

Решение уравнения функции на отрезке

Это все, что мы хотели рассказать о нахождении наибольшего и наименьшего значения функции. Те последовательности действий, которые мы привели, помогут сделать необходимые вычисления максимально быстро и просто. Но помните, что зачастую бывает полезно сначала выяснить, на каких промежутках функция будет убывать, а на каких возрастать, после чего можно делать дальнейшие выводы. Так можно более точно определить наибольшее и наименьшее значение функции и обосновать полученные результаты.

Видео:Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

График линейной функции, его свойства и формулы

Решение уравнения функции на отрезке

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:АЛГЕБРА С НУЛЯ — Точки Экстремума ФункцииСкачать

АЛГЕБРА С НУЛЯ — Точки Экстремума Функции

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

  • если х = 0, то у = -2;
  • если х = 2, то у = -1;
  • если х = 4, то у = 0;
  • и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Решение уравнения функции на отрезке

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

ФункцияКоэффициент «k»Коэффициент «b»
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Видео:Наибольшее и наименьшее значение функции. 10 класс.Скачать

Наибольшее и наименьшее значение функции. 10 класс.

Свойства линейной функции

  1. Область определения функции — множество всех действительных чисел.
  2. Множеством значений функции является множество всех действительных чисел.
  3. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
    Решение уравнения функции на отрезке
  4. Функция не имеет ни наибольшего, ни наименьшего значений.
  5. Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
    b ≠ 0, k = 0, значит y = b — четная;
    b = 0, k ≠ 0, значит y = kx — нечетная;
    b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
    b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция.
  6. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
  7. График функции пересекает оси координат:
    ось абсцисс ОХ — в точке (-b/k, 0);
    ось ординат OY — в точке (0; b).
  8. x=-b/k — является нулем функции.
  9. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
  10. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
    При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k).
  11. Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
    Если k > 0, то этот угол острый, если k

Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Решение уравнения функции на отрезке

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

  • если k > 0, то график наклонен вправо;
  • если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
  • если b 1 /2x + 3, y = x + 3.

Решение уравнения функции на отрезке

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.

Решение уравнения функции на отрезке

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.

Решение уравнения функции на отрезке

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

  • график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
  • график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
  • график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

  • С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
    Координаты точки пересечения с осью OY: (0; b).
  • С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
    Координаты точки пересечения с осью OX: (- b /k; 0)

Решение уравнения функции на отрезке

Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

  • В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
    2 = -4(-3) + b
    b = -10
  • Таким образом, нам надо построить график функции y = -4x — 10
    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
    Поставим эти точки в координатной плоскости и соединим прямой:

Решение уравнения функции на отрезке

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

  1. Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
  2. Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений. Решение уравнения функции на отрезке
  3. Вычтем из второго уравнения системы первое, и получим k = 3.
    Подставим значение k в первое уравнение системы, и получим b = -2.

🌟 Видео

Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.Скачать

Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

5. Решение волнового уравнения на отрезке методом ФурьеСкачать

5. Решение волнового уравнения на отрезке методом Фурье

№ 26704 Найдите наибольшее значение функции y=16tgx-16x+4π-5 на отрезке [-π/4; π/4].Скачать

№ 26704 Найдите наибольшее значение функции y=16tgx-16x+4π-5 на отрезке [-π/4; π/4].

8.1 Решение уравнения теплопроводности на отрезкеСкачать

8.1 Решение уравнения теплопроводности на отрезке
Поделиться или сохранить к себе: