Разделы: Математика
Првило 1. Если с не делится на d, то уравнение ах + ву = с не имеет решений в целых числах. Н.О.Д.(а,в) = d.
Правило 2. Чтобы найти решение уравнения ах + ву = с при взаимно-простых а и в, нужно сначала найти решение (Хо ; уо) уравнения ах + ву = 1; числа СХо , Суо составляют решение уравнения ах + ву = с.
Решить в целых числах (х,у) уравнение
Первый способ. Нахождение частного решения методом подбора и запись общего решения.
Знаем, что если Н.О.Д.(а;в) =1, т.е. а и в взаимно-простые числа, то уравнение (1)
имеет решение в целых числах х и у. Н.О.Д.(5;8) =1. Методом подбора находим частное решение: Хо = 7; уо =2.
Итак, пара чисел (7;2) — частное решение уравнения (1).
Значит, выполняется равенство: 5 x 7 – 8 x 2 = 19 … (2)
Вопрос: Как имея одно решение записать все остальные решения?
Вычтем из уравнения (1) равенство (2) и получим: 5(х -7) – 8(у — 2) =0.
Отсюда х – 7 = . Из полученного равенства видно, что число (х – 7) будет целым тогда и только тогда, когда (у – 2) делится на 5, т.е. у – 2 = 5n, где n какое-нибудь целое число. Итак, у = 2 + 5n, х = 7 + 8n, где n Z.
Тем самым все целые решения исходного уравнения можно записать в таком виде:
n Z.
Второй способ. Решение уравнения относительно одного неизвестного.
Решаем это уравнение относительно того из неизвестных, при котором наименьший (по модулю) коэффициент. 5х — 8у = 19 х = .
Остатки при делении на 5: 0,1,2,3,4. Подставим вместо у эти числа.
Если у = 0, то х = =.
Если у =1, то х = =.
Если у = 2, то х = = = 7 Z.
Если у =3, то х = =.
Если у = 4 то х = =.
Итак, частным решением является пара (7;2).
Тогда общее решение: n Z.
Третий способ. Универсальный способ поиска частного решения.
Для решения применим алгоритм Евклида. Мы знаем, что для любых двух натуральных чисел а, в, таких, что Н.О.Д.(а,в) = 1 существуют целые числа х,у такие, что ах + ву = 1.
1. Сначала решим уравнение 5m – 8n = 1 используя алгоритм Евклида.
2. Затем найдем частное решение уравнения (1)по правилу 2.
3. Запишем общее решение данного уравнения (1).
1. Найдем представление: 1 = 5m – 8n. Для этого используем алгоритм Евклида.
8 = 5 1 + 3.
5 = 3
3 = 2 .
Из этого равенства выразим 1. 1 = 3 — 2 = 3 – (5 — 3 ) =
= 3 — 5 = 3 = (8 — 5 — 5 82 -5
= 5(-2). Итак, m = -3, n = -2.
2. Частное решение уравнения (1): Хо = 19m; уо =19n.
Отсюда получим: Хо =19; уо =19 .
Пара (-57; -38)- частное решение (1).
3. Общее решение уравнения (1): n Z.
Четвертый способ. Геометрический.
1. Решим уравнение 5х – 8у = 1 геометрически.
2. Запишем частное решение уравнения (1).
3. Запишем общее решение данного уравнения (1).
Отложим на окружности последовательно друг за другом равные дуги, составляющие
-ю часть полной окружности. За 8 шагов получим все вершины правильного вписанного в окружность 8-угольника. При этом сделаем 5 полных оборотов.
На 5 – ом шаге получили вершину, соседнюю с начальной, при этом сделали 3 полных оборота и еще прошли — ю часть окружности, так что х = у + .
Итак, Хо = 5, уо =3 является частным решением уравнения 5х – 8у = 1.
2. Частное решение уравнения (1): Хо = 19 уо =19
3. Общее решение уравнения (1): n Z.
- Решение уравнения ax by c
- § 1. Основные понятия и теоремы
- Пункт 5. Линейные диофантовы уравнения с двумя неизвестными.
- Отступление про Диофанта и его исторический след.
- Диофантовы уравнения
- Что такое «решение задач подбором», и можно ли их решать иначе?
- Кто такой Диофант?
- А ведь вы знаете кое-что о диофантовых уравнениях…
- Алгоритмы для решения диофантовых уравнений
- Алгоритм Евклида
- Я покажу это на примере уравнения 2x + 7y = 4.
- Рассмотрим уравнение 13x — 36y = 2.
- Решаем задачи на подбор чисел
- Задача про лапы
- Задача про монетки
- 📸 Видео
Видео:Урок 85 График линейного уравнения ax + by = c с двумя переменными (7 класс)Скачать
Решение уравнения ax by c
Кратко о теории чисел. |
| Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать § 1. Основные понятия и теоремыПункт 5. Линейные диофантовы уравнения с двумя неизвестными.Обычно, произвольное уравнение (но, как правило, все-таки с целыми коэффициентами) получает титул «диофантово», если хотят подчеркнуть, что его требуется решить в целых числах, т.е. найти все его решения, являющиеся целыми. Имя Диофанта — выдающегося Александрийского математика — появляется здесь не случайно. Диофант интересовался решением уравнений в целых числах еще в третьем веке нашей эры и, надо сказать, делал это весьма успешно. Отступление про Диофанта и его исторический след.Третий и последний период античного общества — период господства Рима. Рим завоевал Сиракузы в 212 году, Карфаген — в 146 году, Грецию — в 146, Месопотамию — в 46, Египет — в 30 году до нашей эры. Огромные территории оказались на положении колоний, но римляне не трогали их культуры и экономического устройства пока те исправно платили налоги и поборы. Установленный римлянами на столетия мир, в отличие от всех последующих великих миров и рейхов, принес всей завоеванной территории самый длинный период безвоенного существования, торговли и культурного обмена. Александрия оказалась центром античной математики. Велись оригинальные исследования, хотя компилирование, пересказ и комментирование становились и стали основным видом научной деятельности. Александрийские ученые, если угодно, приводили науку в порядок, собирая разрозненные результаты в единое целое, и многие труды античных математиков и астрономов дошли до нас только благодаря их деятельности. Греческая наука с ее неуклюжим геометрическим способом выражения при систематическом отказе от алгебраических обозначений угасала, алгебру и вычисления (прикладную математику) александрийцы почерпнули с востока, из Вавилона, из Египта. Основной труд Диофанта (ок. 250 г.) — «Арифметика». Уцелели только шесть книг оригинала, общее их число — предмет догадок. Мы не знаем, кем был Диофант, — возможно, что он был эллинизированный вавилонянин. Его книга — один из наиболее увлекательных трактатов, сохранившихся от греко-римской древности. В ней впервые встречается систематическое использование алгебраических символов, есть особые знаки для обозначения неизвестного, минуса, обратной величины, возведения в степень. Папирус N 620 Мичиганского университета, купленный в 1921 году, принадлежит эпохе Диофанта и наглядно это подтверждает. Среди уравнений, решаемых Диофантом, мы обнаруживаем такие, как x 2 — 26 y 2 = 1 и x 2 — 30 y 2 = 1, теперь известные нам как частные случаи «уравнения Пелля», причем Диофант интересуется их решениями именно в целых числах. Книга Диофанта неожиданно оказала еще и огромное косвенное влияние на развитие математической науки последних трех столетий. Дело в том, что юрист из Тулузы Пьер Ферма (1601 — 1665), изучая «Арифметику» Диофанта, сделал на полях этой книги знаменитую пометку: «Я нашел воистину удивительное доказательство того, что уравнение x n + y n = z n при n > 2, не имеет решений в целых числах, однако поля этой книги слишком малы, чтобы здесь его уместить». Это одно из самых бесполезных математических утверждений получило название «Великой теоремы Ферма» и, почему-то, вызвало настоящий ажиотаж среди математиков и любителей (особенно после назначения в 1908 году за его доказательство премии в 100 000 немецких марок). Попытки добить эту бесполезную теорему породили целые разделы современной алгебры, алгебраической теории чисел, теории функций комплексного переменного и алгебраической геометрии, практическая польза от которых уже не подлежит никакому сомнению. Сама теорема, кажется, благополучно доказана в 1995 году; Пьер Ферма, конечно, погорячился на полях «Арифметики», ибо он физически не мог придумать подобного доказательства, требующего колоссальной совокупности математических знаний. Элементарного доказательства великой теоремы Ферма пока никто из жителей нашей планеты найти не смог, хотя над его поиском бились лучшие умы последних трех столетий. Однако, до сих пор тысячи психически нездоровых любителей-«ферматистов» в жажде славы и денег бомбят своими письмами академические институты и университеты и почти ежегодно один из сотрудников кафедры алгебры и дискретной математики Уральского госуниверситета, где я работаю, вынужден вести с таким психом дипломатическую переписку на заранее заготовленном бланке: «Уважаемый. В Вашем доказательстве на странице №. в строке №. содержится ошибка. «. Пусть требуется решить линейное диофантово уравнение: Попробуем порассуждать, глядя на это уравнение. Теперь и ежику ясно, что у такого уравнения имеется решение (пара целых чисел x и y ) только тогда, когда d | c . Поскольку очень хочется решать это уравнение дальше, то пусть d | c . Поделим обе части уравнения на d , успокоимся, и всюду далее будем считать, что ( a , b ) = 1. Так можно. Рассмотрим несколько случаев. Случай 1. Пусть c = 0, уравнение имеет вид ax + by = 0 — « однородное линейное диофантово уравнение». Немножко потрудившись, находим, что
Так как x должен быть целым числом, то y = at , где t — произвольное целое число (параметр). Значит x = — bt и решениями однородного диофантова уравнения ax + by = 0 являются все пары вида <- bt , at >, где t = 0; ±1; ±2;. Множество всех таких пар называется общим решением линейного однородного диофантова уравнения, любая же конкретная пара из этого множества называется частным решением. Дорогие читатели, не правда ли, что все названия уже до боли знакомы? «Однородное уравнение», «общее решение» — все это мы уже слышали и в курсе линейной алгебры и в лекциях по дифференциальным уравнениям. При разборе следующего случая эта аналогия буквально выпирает на первый план, что, конечно, не случайно, но исследование единства великого государства линейности на материке математики выходит за рамки этой скромной книжки. Случай 2. Пусть теперь c № 0. Этот случай закрывается следующей теоремой. Теорема. Пусть ( a , b ) = 1, < x 0 , y 0 > — частное решение диофантова уравнения ax + by = c . Тогда его общее решение задается формулами:
Таким образом, и в теории линейных диофантовых уравнений общее решение неоднородного уравнения есть сумма общего решения соответствующего однородного уравнения и некоторого (любого) частного решения неоднородного уравнения. Вот оно — проявление единства линейного мира! (Однажды, перед экзаменом по дифференциальным уравнениям, мне снился кошмар, будто все линейные пространства решений сговорились между собой и требовали от меня прибавить к ним частное решение, так как они не хотели содержать нулевой вектор, а хотели быть линейными многообразиями. Я отказался, а наутро, на экзамене, мне досталась однородная система!) Доказательство. То, что правые части указанных в формулировке теоремы равенств действительно являются решениями, проверяется их непосредственной подстановкой в исходное уравнение. Покажем, что любое решение уравнения ax + by = c имеет именно такой вид, какой указан в формулировке теоремы. Пусть < x * , y *> — какое-нибудь решение уравнения ax + by = c . Тогда ax * + by * = c , но ведь и ax 0 + by 0 = c . Следуя многолетней традиции доказательства подобных теорем, вычтем из первого равенства второе и получим: — однородное уравнение. Далее, глядя на случай 1, рассмотрение которого завершилось несколькими строками выше, пишем сразу общее решение: x *- x 0 = — bt , y *- y 0 = at , откуда моментально, используя навыки третьего класса средней школы, получаем:
«Все это, конечно, интересно», — скажет читатель, — «Но как же искать то самое частное решение < x 0 , y 0 >, ради которого и затеяна вся возня этого пункта и которое, как теперь выясняется, нам так нужно?». Ответ до глупости прост. Мы договорились, что ( a , b ) = 1. Это означает, что найдутся такие u и v из Z , что au + bv = 1 (если вы это забыли, вернитесь в пункт 4), причем эти u и v мы легко умеем находить с помощью алгоритма Евклида. Умножим теперь равенство au + bv = 1 на c и получим: a ( uc ) + b ( vc ) = c , т.е. x 0 = uc , y 0 = vc . Вот и все! Пример. Вы — хроноп, придуманный Хулио Кортасаром в книжке «Из жизни хронопов и фамов». Вам нужно расплатиться в магазине за синюю пожарную кишку, ибо красная в хозяйстве уже давно есть. У вас в кармане монеты достоинством только в 7 и 12 копеек, а вам надо уплатить 43 копейки. Как это сделать? Решаем уравнение: Включаем алгоритм Евклида: 12 = 7· 1 + 5 Значит, наибольший общий делитель чисел 7 и 12 равен 1 , а его линейное выражение таково: 1 = 5 — 2· 2 = 5 — (7 — 5) · 2 = (12 — 7) — (7 — (12 — 7) · 2) = 12· 3 + 7· (- 5), т.е. u = — 5, v = 3. Частное решение: Итак, вы должны отобрать у кассира 215 семикопеечных монет и дать ему 129 двенадцатикопеечных. Однако процедуру можно упростить, если записать общее решение неоднородного диофантова уравнения: и, легко видеть, что при t = — 18, получаются вполне разумные x = 1, y = 3, поэтому дубасить кассира необязательно.
|