Решение уравнений в двоичной системе счисления

Двоичный калькулятор онлайн

Данный калькулятор может производить следующие действия над двоичными числами:

Видео:Арифметические действия в двоичной системе счисленияСкачать

Арифметические действия в двоичной системе счисления

Сложение двоичных чисел

Сложение двух двоичных чисел производится столбиком поразрядно. Начиная с младшего разряда (справа на лево), как и при сложении столбиком десятичных чисел. Но так как цифр всего две (0 и 1), их сложение происходит по следующим правилам:

Пример

Для примера сложим 1011 и 101:

+1011
101
10000

Видео:Двоичная система счисления — самое простое объяснениеСкачать

Двоичная система счисления — самое простое объяснение

Вычитание двоичных чисел

Вычитание двоичных чисел производится аналогично сложению – столбиком, но по следующим правилам:

Пример

Для примера вычтем из числа 1011 число 101:

1011
101
110

Видео:Информатика 8 класс. Системы счисления. Решение уравненийСкачать

Информатика 8 класс. Системы счисления. Решение уравнений

Умножение двоичных чисел

Умножение двоичных чисел производится в столбик аналогично умножению в десятичной системе, но по следующим правилам:

Пример

Для примера перемножим числа 1011 и 101:

×1011
101
+1011
0000
1011
110111

Видео:Сложение в разных системах счисления (2, 8, 16). Урок 5Скачать

Сложение в разных системах счисления (2, 8, 16). Урок 5

Деление двоичных чисел

Внешне деление двоичных чисел похоже на деление десятичных чисел, но тут есть свои нюансы: такое деление производится вычитанием делителя со сдвигом вправо, если остаток больше нуля. Чтобы понять этот процесс рассмотрим пример:

Видео:Двоичная система счисления. Урок 1Скачать

Двоичная система счисления. Урок 1

Карточка для практической работы по теме «Уравнения и системы счисления»
учебно-методический материал по информатике и икт (8, 9, 10, 11 класс)

В карточке подробно разобраны различные примеры решения уравнений в разных системах счисления. Далее ребятам предлагаются аналогичные задания для самостоятельного решения и напоследок подборка заданий на повторение предыдущих тем. Часть заданий взята с сайта Константина Юрьевича Полякова

Видео:СИСТЕМЫ СЧИСЛЕНИЯ для новичковСкачать

СИСТЕМЫ СЧИСЛЕНИЯ для новичков

Скачать:

ВложениеРазмер
Задания для практической работы29.48 КБ

Видео:Системы счисления: Сложение, вычитание и умножение двоичных чисел. Центр онлайн-обучения «Фоксфорд»Скачать

Системы счисления: Сложение, вычитание и умножение двоичных чисел. Центр онлайн-обучения «Фоксфорд»

Предварительный просмотр:

  1. Изучите способы решения уравнений и законспектируйте в тетрадь все примеры

Решите уравнение 42 5 +х=1122 3 .Ответ запишите в четверичной системе счисления.

Переведем все числа в десятичную систему счисления

4*5 1 +2*5 0 +х=1*3 3 +1*3 2 +2*3 1 +2*3 0

Переведем ответ из десятичной системы счисления в четверичную

22 4 Решение уравнений в двоичной системе счисления Решение уравнений в двоичной системе счисления

20 5 4 Решение уравнений в двоичной системе счисления Решение уравнений в двоичной системе счисления Решение уравнений в двоичной системе счисления Решение уравнений в двоичной системе счисления

Решите уравнение. 104 х +20 х =84 10 . Ответ запишите в двоичной системе счисления.

Переведем все числа в десятичную систему счисления

104 х +20 х =84 10

1*х 2 +0*х 1 + 4*х 0 +2*х 1 +0*х 0 =84

х 1 =8 , х 2 =-10 (не подходит)

Переведем ответ из десятичной системы счисления в двоичную

В системе счисления с некоторым основанием десятичное число 47 записывается в виде 52. Укажите это основание.

Пусть основание равно х

Решим это уравнение:

Запись числа 65 8 в некоторой системе счисления выглядит так: 311 N . Найдите основание системы счисления N.

Решим это уравнение:

3*N 2 +1*N 1 +1*N 0 =6*8 1 +5*8 0

x 2 не подходит, т.к. отрицательный

  1. Решите уравнение 60 8 +х=120 7 . Ответ запишите в шестеричной системе счисления.
  2. Решите уравнение . Ответ запишите в троичной системе счисления.
  3. В системе счисления с некоторым основанием десятичное число 12 записывается в виде 110. Укажите это основание.
  4. Решите уравнение . Ответ запишите в шестеричной системе счисления.
  5. В системе счисления с некоторым основанием десятичное число 49 записывается в виде 100. Укажите это основание.
  6. Запись числа 57 8 в некоторой системе счисления выглядит так: 2D N . Найдите основание системы счисления N.
  7. Решите уравнение . Ответ запишите в десятичной системе счисления.
  8. Десятичное число 70 в некоторой системе счисления записывается как 64. Определите основание системы счисления.
  9. Определите число N, для которого выполняется равенство 143 N + 25 6 = 138 N+1 .
  10. Запись числа 2B 16 в некоторой системе счисления выглядит так: 111 N . Найдите основание системы счисления N.
  11. Известно, что X = 12 4 + 4 5 + 101 2 . Чему равно число X в десятичной системе счисления?
  12. Выполните арифметические операции:
  1. 7215 8 -676 8
  2. D1C 16 +AF95 16
  3. 1011101 2 ·1100 2
  4. 5414 8 +435 8
  5. 10101100 2 +110001 2
  6. B8D4F 16 -BA76 16
  7. 10010101 2 -11000100 2
  1. Перевести:
  1. 1023 4 =X 7
  2. 2541 7 =X 3
  1. Вычислите сумму чисел x и y при x = D2 16 , y = 37 8 . Результат представьте в двоичной системе счисления.

Видео:Перевод числа в двоичную систему за два шага!!!Скачать

Перевод числа в двоичную систему за два шага!!!

По теме: методические разработки, презентации и конспекты

Решение уравнений в двоичной системе счисления

Практическая работа «Компьютерные словари и системы машинного перевода текста»

Практическая работа«Компьютерные словари и системы машинного перевода текста»1. Открыть Электронный словарь на сайте www.ver-dict.ru или по выбору.2.

Решение уравнений в двоичной системе счисления

Инструктивная карточка к практической работе по теме «спирты»

Инструктивная карточка к практической работе по теме «свойства спиртов», 10 (11) класс, органическая химия. Данная карточка позволяет оптимизировать проведение практической работы по органической хими.

Решение уравнений в двоичной системе счисления

Проверочная работа по по теме «Системы счисления»

Проверочная работа по по теме «Системы счисления» предназначения для проверки знаний учащихся 9 классов. В работе представлены 3 варианта.

Инструктивные карточки к практическим работам по химии

Представлены инструктивные карточки к практическим работам по химии за курс 8-11 класс.

Решение уравнений в двоичной системе счисления

Контрольная работа по теме «Информация. Системы счисления»

Материал контрольной работы в 2-х вариантах с ответами. Используются как тестовые задания, так и задания, требующие приведения решения.

Решение уравнений в двоичной системе счисления

инструктивная карточка к практической работе 9 класс

инструктивная карточка к практической работе 9 класс.

Решение уравнений в двоичной системе счисления

Практическая работа «Строение атома. Периодическая система химических элементов»

Задание1. Дать характеристику химическому элементу №39 по плану:Название, символ _______________________Порядковый номер______________________Атомная масса__________________________Ме, неМе, пер.

Видео:Системы счисления #1. Подготовка к ЕГЭ по информатике. Видеокурс.Скачать

Системы счисления #1. Подготовка к ЕГЭ по информатике. Видеокурс.

Задача №16. Поиск основания системы по окончанию числа, уравнения и различные кодировки, арифметические действия в различных системах.

Перед тем, как приступить к решению задач, нам нужно понять несколько несложных моментов.

Рассмотрим десятичное число 875. Последняя цифра числа (5) – это остаток от деления числа 875 на 10. Последние две цифры образуют число 75 – это остаток от деления числа 875 на 100. Аналогичные утверждения справедливы для любой системы счисления:

Последняя цифра числа – это остаток от деления этого числа на основание системы счисления.

Последние две цифры числа – это остаток от деления числа на основание системы счисления в квадрате.

Например, . Разделим 23 на основание системы 3, получим 7 и 2 в остатке (2 – это последняя цифра числа в троичной системе). Разделим 23 на 9 (основание в квадрате), получим 18 и 5 в остатке (5 = ).

Вернемся опять к привычной десятичной системе. Число = 100000. Т.е. 10 в степени k– это единица и k нулей.

Аналогичное утверждение справедливо для любой системы счисления:

Основание системы счисления в степени k в этой системе счисления записывается как единица и k нулей.

1. Поиск основания системы счисления

Пример 1.

В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.

Решение:

Обозначим искомое основание x. Тогда .Т.е. x = 9.

Пример 2.

В системе счисления с некоторым основанием десятичное число 13 записывается в виде 111. Укажите это основание.

Решение:

Обозначим искомое основание x. Тогда

Решаем квадратное уравнение, получаем корни 3 и -4. Поскольку основание системы счисления не может быть отрицательным, ответ 3.

Ответ: 3

Пример 3

Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 29 оканчивается на 5.

Решение:

Если в некоторой системе число 29 оканчивается на 5, то уменьшенное на 5 число (29-5=24) оканчивается на 0. Ранее мы уже говорили, что число оканчивается на 0 в том случае, когда оно без остатка делится на основание системы. Т.е. нам нужно найти все такие числа, которые являются делителями числа 24. Эти числа: 2, 3, 4, 6, 8, 12, 24. Заметим, что в системах счисления с основанием 2, 3, 4 нет числа 5 (а в формулировке задачи число 29 оканчивается на 5), значит остаются системы с основаниями: 6, 8, 12,

Ответ: 6, 8, 12, 24

Пример 4

Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 71 оканчивается на 13.

Если в некоторой системе число оканчивается на 13, то основание этой системы не меньше 4 (иначе там нет цифры 3).

Уменьшенное на 3 число (71-3=68) оканчивается на 10. Т.е. 68 нацело делится на искомое основание системы, а частное от этого при делении на основание системы дает в остатке 0.

Выпишем все целые делители числа 68: 2, 4, 17, 34, 68.

2 не подходит, т.к. основание не меньше 4. Остальные делители проверим:

68:4 = 17; 17:4 = 4 (ост 1) – подходит

68:17 = 4; 4:17 = 0 (ост 4) – не подходит

68:34 = 2; 2:17 = 0 (ост 2) – не подходит

68:68 = 1; 1:68 = 0 (ост 1) – подходит

2. Поиск чисел по условиям

Пример 5

Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием четыре оканчивается на 11?

Решение:

Для начала выясним, как выглядит число 25 в системе счисления с основанием 4.

. Т.е. нам нужно найти все числа, не больше , запись которых оканчивается на 11. По правилу последовательного счета в системе с основанием 4,
получаем числа и . Переводим их в десятичную систему счисления:

3. Решение уравнений

Пример 6

Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).

Переведем все числа в десятичную систему счисления:

Квадратное уравнение имеет корни -8 и 6. (т.к. основание системы не может быть отрицательным). .

Ответ: 20

4. Подсчет количества единиц (нулей) в двоичной записи значения выражения

Для решения этого типа задач нам нужно вспомнить, как происходит сложение и вычитание «в столбик»:

При сложении происходит поразрядное суммирование записанных друг под другом цифр, начиная с младших разрядов. В случае, если полученная сумма двух цифр больше или равна основанию системы счисления, под суммируемыми цифрами записывается остаток от деления этой суммы на основание системы, а целая часть от деления этой суммы на основание системы прибавляется к сумме следующих разрядов.

При вычитании происходит поразрядное вычитание записанных друг под другом цифр, начиная с младших разрядов. В случае, если первая цифра меньше второй, мы «занимаем» у соседнего (большего) разряда единицу. Занимаемая единица в текущем разряде равна основанию системы счисления. В десятичной системе это 10, в двоичной 2, в троичной 3 и т.д.

Пример 7

Сколько единиц содержится в двоичной записи значения выражения: ?

Представим все числа выражения, как степени двойки:

В двоичной записи двойка в степени n выглядит, как 1 и n нулей. Тогда суммируя и , получим число, содержащее 2 единицы:

Решение уравнений в двоичной системе счисления

Теперь вычтем из получившегося числа 10000. По правилам вычитания занимаем у следующего разряда.

Решение уравнений в двоичной системе счисления

Теперь прибавляем к получившемуся числу 1:

Решение уравнений в двоичной системе счисления

Видим, что у результата 2013+1+1=2015 единиц.

🎬 Видео

Урок 32. Перевод чисел между системами счисленияСкачать

Урок 32. Перевод чисел между системами счисления

Дробные числа в двоичной системе счисления. Урок 2Скачать

Дробные числа в двоичной системе счисления. Урок 2

Из двоичной в десятичнуюСкачать

Из двоичной в десятичную

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Деление в двоичной системе счисления (деление в 2 сс)Скачать

Деление в двоичной системе счисления (деление в 2 сс)

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Двоичная арифметикаСкачать

Двоичная арифметика

Как решают уравнения в России и США!?Скачать

Как решают уравнения в России и США!?

Вычитание в разных система счисления (2, 8, 16). Урок 6Скачать

Вычитание в разных система счисления (2, 8, 16). Урок 6

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика
Поделиться или сохранить к себе: