Решение уравнений в алгебре множеств онлайн

Содержание
  1. Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.
  2. Как пользоваться калькулятором
  3. Видеоинструкция к калькулятору
  4. Используемые символы
  5. Обозначения логических операций
  6. Что умеет калькулятор
  7. Что такое булева функция
  8. Что такое таблица истинности?
  9. Логические операции
  10. Таблица истинности логических операций
  11. Как задать логическую функцию
  12. Способы представления булевой функции
  13. Совершенная дизъюнктивная нормальная форма (ДНФ)
  14. Совершенная конъюнктивная нормальная форма (КНФ)
  15. Алгебраическая нормальная форма (АНФ, полином Жегалкина)
  16. Алгоритм построения СДНФ для булевой функции
  17. Алгоритм построения СКНФ для булевой функции
  18. Алгоритм построения полинома Жегалкина булевой функции
  19. Примеры построения различных представлений логических функций
  20. Построение совершенной дизъюнктивной нормальной формы:
  21. Построение совершенной конъюнктивной нормальной формы:
  22. Построение полинома Жегалкина:
  23. Множества
  24. Пересечение множеств
  25. Онлайн калькулятор позволяет найти пересечение множеств A и B (А ∩ B).
  26. 🎦 Видео

Видео:Множества. Операции над множествами. 10 класс алгебраСкачать

Множества. Операции над множествами. 10 класс алгебра

Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.

Онлайн калькулятор позволяет быстро строить таблицу истинности для произвольной булевой функции или её вектора, рассчитывать совершенную дизъюнктивную и совершенную конъюнктивную нормальные формы, находить представление функции в виде полинома Жегалкина, строить карту Карно и классифицировать функцию по классам Поста.

Калькулятор таблицы истинности, СКНФ, СДНФ, полинома Жегалкина

введите функцию или её вектор

Построено таблиц, форм:

Видео:Множества и операции над нимиСкачать

Множества и операции над ними

Как пользоваться калькулятором

  1. Введите в поле логическую функцию (например, x1 ∨ x2) или её вектор (например, 10110101)
  2. Укажите действия, которые необходимо выполнить с помощью переключателей
  3. Укажите, требуется ли вывод решения переключателем «С решением»
  4. Нажмите на кнопку «Построить»

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Видеоинструкция к калькулятору

Используемые символы

В качестве переменных используются буквы латинского и русского алфавитов (большие и маленькие), а также цифры, написанные после буквы (индекс переменной). Таким образом, именами переменных будут: a , x , a1 , B , X , X1 , Y1 , A123 и так далее.

Для записи логических операций можно использовать как обычные символы клавиатуры ( * , + , ! , ^ , -> , = ), так и символы, устоявшиеся в литературе ( ∧ , ∨ , ¬ , ⊕ , → , ≡ ). Если на вашей клавиатуре отсутствует нужный символ операции, то используйте клавиатуру калькулятора (если она не видна, нажмите «Показать клавиатуру»), в которой доступны как все логические операции, так и набор наиболее часто используемых переменных.

Для смены порядка выполнения операций используются круглые скобки ().

Обозначения логических операций

  • И (AND): & • ∧ *
  • ИЛИ (OR): ∨ +
  • НЕ (NOT): ¬ !
  • Исключающее ИЛИ (XOR): ⊕ ^
  • Импликация: -> → =>
  • Эквивалентность: =

Что умеет калькулятор

  • Строить таблицу истинности по функции
  • Строить таблицу истинности по двоичному вектору
  • Строить совершенную конъюнктивную нормальную форму (СКНФ)
  • Строить совершенную дизъюнктивную нормальную форму (СДНФ)
  • Строить полином Жегалкина (методами Паскаля, треугольника, неопределённых коэффициентов)
  • Определять принадлежность функции к каждому из пяти классов Поста
  • Строить карту Карно
  • Минимизировать ДНФ и КНФ
  • Искать фиктивные переменные

Видео:Подмножество. Операции над множествами (пересечение, объединение множеств) – 8 класс алгебраСкачать

Подмножество. Операции над множествами (пересечение, объединение множеств) – 8 класс алгебра

Что такое булева функция

Булева функция f(x1, x2, . xn) — это любая функция от n переменных x1, x2, . xn, в которой её аргументы принимают одно из двух значений: либо 0, либо 1, и сама функция принимает значения 0 или 1. То есть это правило, по которому произвольному набору нулей и единиц ставится в соответствие значение 0 или 1. Подробнее про булевы функции можно посмотреть на Википедии.

Видео:Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Что такое таблица истинности?

Таблица истинности — это таблица, описывающая логическую функцию, а именно отражающую все значения функции при всех возможных значениях её аргументов. Таблица состоит из n+1 столбцов и 2 n строк, где n — число используемых переменных. В первых n столбцах записываются всевозможные значения аргументов (переменных) функции, а в n+1-ом столбце записываются значения функции, которые она принимает на данном наборе аргументов.

Довольно часто встречается вариант таблицы, в которой число столбцов равно n + число используемых логических операций. В такой таблице также первые n столбцов заполнены наборами аргументов, а оставшиеся столбцы заполняются значениями подфункций, входящих в запись функции, что позволяет упростить расчёт конечного значения функции за счёт уже промежуточных вычислений.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Логические операции

Логическая операция — операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых. В качестве основных операций обычно называют конъюнкцию (∧ или &), дизъюнкцию (∨ или |), импликацию (→), отрицание (¬), эквивалентность (=), исключающее ИЛИ (⊕).

Таблица истинности логических операций

aba ∧ ba ∨ b¬a¬ba → ba = ba ⊕ b
000011110
010110101
100101001
111100110

Видео:9 класс, 2 урок, Множества и операции над нимиСкачать

9 класс, 2 урок, Множества и операции над ними

Как задать логическую функцию

Есть множество способов задать булеву функцию:

  • таблица истинности
  • характеристические множества
  • вектор значений
  • матрица Грея
  • формулы

Рассмотрим некоторые из них:

Чтобы задать функцию через вектор значений необходимо записать вектор из 2 n нулей и единиц, где n — число аргументов, от которых зависит функция. Например, функцию двух аргументов можно задать так: 0001 (операция И), 0111 (операция ИЛИ).

Чтобы задать функцию в виде формулы, необходимо записать математическое выражение, состоящее из аргументов функции и логических операций. Например, можно задать такую функцию: a∧b ∨ b∧c ∨ a∧c

Видео:Операции над множествамиСкачать

Операции  над  множествами

Способы представления булевой функции

С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:

  • Совершенная дизъюнктивная нормальная форма (СДНФ)
  • Совершенная конъюнктивная нормальная форма (СКНФ)
  • Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Совершенная дизъюнктивная нормальная форма (ДНФ)

Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза.
Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций.
Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.

Например, ДНФ является функция ¬a bc ∨ ¬a ¬b c ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.

Совершенная конъюнктивная нормальная форма (КНФ)

Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза.
Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций.
Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.

Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.

Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.

Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1

Алгоритм построения СДНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 1
  3. Выписать простые конъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 0, то она входит в конъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые конъюнкции с помощью дизъюнкции

Алгоритм построения СКНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 0
  3. Выписать простые дизъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 1, то она входит в дизъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые дизъюнкции с помощью конъюнкции

Алгоритм построения полинома Жегалкина булевой функции

Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.

  1. Построить таблицу истинности для функции
  2. Добавить новый столбец к таблице истинности и записать в 1, 3, 5. ячейки значения из тех же строк предыдущего столбца таблицы истинности, а к значениям в строках 2, 4, 6. прибавить по модулю два значения из соответственно 1, 3, 5. строк.
  3. Добавить новый столбец к таблице истинности и переписать в новый столбец значения 1, 2, 5, 6, 9, 10. строк, а к 3, 4, 7, 8, 11, 12. строкам аналогично предыдущему пункту прибавить переписанные значения.
  4. Повторить действия каждый раз увеличивая в два раза количество переносимых и складываемых элементов до тех пор, пока длина не станет равна числу строк таблицы.
  5. Выписать булевы наборы, на которых значение последнего столбца равно единице
  6. Записать вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора записать единицу) и объединить их с помощью операции исключающего ИЛИ.

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Примеры построения различных представлений логических функций

Построим совершенные дизъюнктивную и дизъюнктивную нормальные формы, а также полином Жегалкина для функции трёх переменных F = ¬a b∨ ¬b c∨ca

1. Построим таблицу истинности для функции

abc¬a¬a ∧b¬b¬b ∧c¬a ∧b∨ ¬b ∧cc∧a¬a ∧b∨ ¬b ∧c∨c∧a
0001010000
0011011101
0101100101
0111100101
1000010000
1010011111
1100000000
1110000011

Построение совершенной дизъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает истинное значение:

В соответствие найденным наборам поставим элементарные конъюнкции по всем переменным, причём если переменная в наборе принимает значение 0, то она будет записана с отрицанием:

Объединим конъюнкции с помощью дизъюнкции и получим совершенную дизъюнктивную нормальную форму:

Построение совершенной конъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает ложное значение:

В соответствие найденным наборам поставим элементарные дизъюнкции по всем переменным, причём если переменная в наборе принимает значение 1, то она будет записана с отрицанием:

Объединим дизъюнкции с помощью конъюнкции и получим совершенную конъюнктивную нормальную форму:

Построение полинома Жегалкина:

Добавим новый столбец к таблице истинности и запишем в 1, 3, 5 и 7 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 2, 4, 6 и 8 сложим по модулю два со значениями из соответственно 1, 3, 5 и 7 строк:

abcF1
00000
0011⊕ 01
01011
0111⊕ 10
10000
1011⊕ 01
11000
1111⊕ 01

Добавим новый столбец к таблице истинности и запишем в 1 и 2, 5 и 6 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 3 и 4, 7 и 8 сложим по модулю два со значениями из соответственно 1 и 2, 5 и 6 строк:

abcF12
000000
001111
01011⊕ 01
01110⊕ 11
100000
101111
11000⊕ 00
11111⊕ 10

Добавим новый столбец к таблице истинности и запишем в 1 2, 3 и 4 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 5, 6, 7 и 8 сложим по модулю два со значениями из соответственно 1, 2, 3 и 4 строк:

abcF123
0000000
0011111
0101111
0111011
100000⊕ 00
101111⊕ 10
110000⊕ 11
111110⊕ 11

Окончательно получим такую таблицу:

abcF123
0000000
0011111
0101111
0111011
1000000
1011110
1100001
1111101

Выпишем наборы, на которых получившийся вектор принимает единичное значение и запишем вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора следует записать единицу):

Объединяя полученные конъюнкции с помощью операции исключающего или, получим полином Жегалкина: c⊕b⊕bc⊕ab⊕abc

Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.

Видео:Информатика. Алгебра логики: Теория множеств. Центр онлайн-обучения «Фоксфорд»Скачать

Информатика. Алгебра логики: Теория множеств. Центр онлайн-обучения «Фоксфорд»

Множества

Множество – математический объект, являющийся набором каких-то элементов этого множества. Пример записи множества: A = . Изучением множеств занимается теория множеств. Выделяют бинарные и унарные операции над множествами. Мы подготовили для вас онлайн калькуляторы для решения бинарных операций: пересечение, разность (обычная и симметрическая), объединение и произведение множеств.

Решение уравнений в алгебре множеств онлайн

Объединение множеств А и В называется множество А ∪ В, содержащее в себе все элементы исходных множеств.

Решение уравнений в алгебре множеств онлайн

Пересечением называется множество А ∪ В, содержащее элементы, встречающиеся как в множестве A, так и B.

Решение уравнений в алгебре множеств онлайн

Разностью множества А и В, называется множество, содержащее элементы из множества А, но не входящие в В.

Решение уравнений в алгебре множеств онлайн

Симметрическая разность — множество, содержащее непересекающиеся элементы.

Видео:Круги Эйлера. Логическая задача на множества. Иностранные языкиСкачать

Круги Эйлера. Логическая задача на множества. Иностранные языки

Пересечение множеств

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.

Например, если А=, B=, то А ∩ В =

Онлайн калькулятор позволяет найти пересечение множеств A и B (А ∩ B).

Также доступны следующие операции над множествами: объединение, разность, симметрическая разность.

Онлайн калькуляторы

Calculatorium.ru — это бесплатные онлайн калькуляторы для самых разнообразных целей: математические калькуляторы, калькуляторы даты и времени, здоровья, финансов. Инструменты для работы с текстом. Конвертеры. Удобное решение различных задач — в учебе, работе, быту.

Актуальная информация

Помимо онлайн калькуляторов, сайт также предоставляет актуальную информацию по курсам валют и криптовалют, заторах на дорогах, праздниках и значимых событиях, случившихся в этот день. Информация из официальных источников, постоянное обновление.

🎦 Видео

ОГЭ по математике. Решаем уравнения | МатематикаСкачать

ОГЭ по математике. Решаем уравнения | Математика

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Пересечение множеств. Объединение множеств. 5 класс.Скачать

Пересечение множеств. Объединение множеств. 5 класс.

Пересечение и объединение множеств.Решение примеровСкачать

Пересечение и объединение множеств.Решение примеров

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

3.10 Пример - доказательство равенства двух множествСкачать

3.10 Пример - доказательство равенства двух множеств
Поделиться или сохранить к себе: