В этой статье рассмотрим один из способов разложения на множители многочленов высших степеней. С его помощью вы сможете решать уравнения и неравенства вида:
Пример:
(6x^2+6+x^3+11x) записываем как (x^3+6x^2+11x+6)
1) Подбором найдите один из корней многочлена.
Для этого вместо (x) подставьте по очереди числа: (±1,±2,±3,±4,±5) и т.д. Число, которое сделает многочлен нулем и будет его корнем.
Пример:
(x^3+6x^2+11x+6)
Подставим (1). Имеем: (1^3+6 cdot 1^2+11cdot 1+6=24) — не равно нулю. Ищем дальше.
Подставим (-1). Получим: ((-1)^3+6cdot (-1)^2+11cdot (-1)+6=-1+6-11+6=0) – значит (-1) корень нашего многочлена.
Матхак! Пробуйте сначала числа, на которые свободный член делиться нацело. В данном случае свободный член (6), поэтому в первую очередь нужно пробовать числа: (±1,±2,±3) и (±6).
2) Поделите исходный многочлен на (x-x_0), где (x_0) – найденный корень. Процесс деления многочлена на многочлен сильно похож на обычное деление в столбик — поэтому и называется деление «уголком».
а) Запишите многочлены как числа при делении столбиком:
б) Подберите такой одночлен, чтобы при умножении его на (x), получалось первое слагаемое исходного многочлена, то есть в нашем случае (x^3). Очевидно, что таким одночленом будет (x^2).
в) Умножьте этот одночлен на делитель и запишите результат под исходным многочленом. Таким образом, мы умножаем (x^2) на (x+1) и получаем (x^3+x^2).
г) Теперь точно так же, как в случае деления натуральных чисел, поставьте знак минус, проведите горизонтальную черту и сделайте вычитание.
д) Повторите шаги б) – г) только уже с новым многочленом:
— подберите такой одночлен, чтобы при умножении на (x) первое слагаемое было таким же, как в новом многочлене: в нашем примере этим одночленом будет (5x).
— умножьте этот одночлен на делитель: умножив (5x) на (x+1) получим (5x^2+5x).
— вычтите получившиеся многочлены:
е) И вновь повторяем шаги б) – г) до тех пор, пока после вычитания не останется ноль.
3) Запишите новый вид многочлена, представив его как произведение делителя и частного.
(x^3+6x^2+11x+6=(x+1)(x^2+5x+6))
Матхак! Если есть сомнения в правильности разложения, можно проверить его раскрытием скобок – в результате должен получиться исходный многочлен.
Проверим наш случай: ((x+1)(x^2+5x+6)=x^3+5x^2+6x+x^2+5x+6=x^3+6x^2+11x+6).
Получен исходный многочлен, значит, поделили правильно.
Матхак! Если в результате деления у вас в остатке получился не ноль, значит, скорее всего, в решении есть ошибка.
Давайте теперь решим пример с применением изученного материала.
Пример: Решите неравенство (x^4-3x^3+6x-4≥0).
Найдем один из корней многочлена слева. Проверим (1).
Поделим многочлен (x^4-3x^3+6x-4) на ((x-1)) уголком. Однако замечаем, что у нас нет слагаемого с квадратом. Чтоб нам было удобнее решать, запишем вместо него выражение (0·x^2) (ведь его значение равно нулю, а значит оно ничего не меняет в исходном многочлене).
Запишем новый вид нашего неравенства.
С первой скобкой все хорошо, а вот вторую надо бы разложить еще. Так как высшая степень в ней — куб, то мы можем попробовать разложить методом группировки, что проще чем деление в столбик. У первых двух слагаемых вынесем за скобку (x^2), а у третьего и четвертого – минус двойку.
Теперь выносим общую скобку ((x-2)) за скобку.
Но и это еще не все, потому что (x^2-2) можно разложить с помощью формулы сокращенного умножения «разность квадратов»: (a^2-b^2=(a-b)(a+b)).
Вот сейчас все готово для применения метода интервалов .
Видео:ЕГЭ по математике. Деление многочлена на двучленСкачать
«Решение уравнений высших степеней». 9-й класс
Разделы: Математика
Класс: 9
Учебная:
Развивающая:
- Развитие внимания учащихся.
- Развитие умения добиваться результатов труда.
- Развитие интереса к изучению алгебры и навыков самостоятельной работы.
Воспитывающая:
Оборудование: компьютер, проектор.
1 этап работы. Организационный момент.
2 этап работы. Мотивация и выход на постановку проблемы
Уравнение одно из важнейших понятий математики. Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры.
В школьном курсе изучения математики очень много внимания уделяется решению различного вида уравнений. До девятого класса мы умели решать только линейные и квадратные уравнения. Уравнения третьей, четвёртой и т.д. степеней называются уравнениями высших степеней. В девятом классе мы познакомились с двумя основными приёмами решения некоторых уравнений третьей и четвёртой степеней: разложение многочлена на множители и использование замены переменной.
А можно ли решить уравнения более высоких степеней? На этот вопрос мы постараемся сегодня найти ответ.
3 этап работы. Повторить ранее изученный материал. Ввести понятие уравнения высших степеней.
1) Решение линейного уравнения.
Линейным называется уравнение вида , где по определению. Такое уравнение имеет единственный корень .
2) Решение квадратного уравнения.
Квадратным называется уравнение вида , где . Количество корней и сами корни определяются дискриминантом уравнения . Для уравнение корней не имеет, для имеет один корень (два одинаковых корня)
, для имеет два различных корня .
Из рассмотренных линейных и квадратных уравнений видим, что количество корней уравнения не более его степени. В курсе высшей алгебры доказывается, что уравнение -й степени имеет не более n корней. Что касается самих корней, то тут ситуация намного сложнее. Для уравнений третьей и четвёртой степеней известны формулы для нахождения корней. Однако эти формулы очень сложны и громоздки и практического применения не имеют. Для уравнений пятой и более высоких степеней общих формул не существует и существовать не может (как было доказано в XIX в. Н. Абелем и Э. Галуа).
Будем называть уравнения третьей, четвёртой и т.д. степеней уравнениями высших степеней. Некоторые уравнения высоких степеней удаётся решить с помощью двух основных приёмов: разложением многочлена на множители или с использованием замены переменной.
3) Решение кубического уравнения.
Решим кубическое уравнение
Сгруппируем члены многочлена, стоящего в левой части уравнения, и разложим на множители. Получим:
Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три линейных уравнения:
Итак, данное кубическое уравнение имеет три корня: ; ;.
4) Решение биквадратного уравнения.
Очень распространены биквадратные уравнения, которые имеют вид (т.е. уравнения, квадратные относительно ). Для их решения вводят новую переменную .
Решим биквадратное уравнение .
Введём новую переменную и получим квадратное уравнение , корнями которого являются числа и 4.
Вернёмся к старой переменной и получим два простейших квадратных уравнения:
(корни и )
(корни и )
Итак, данное биквадратное уравнение имеет четыре корня:
; ;.
Попробуем решить уравнение используя выше изложенные приёмы.
4 этап работы. Привести некоторые утверждения о корнях многочлена вида , где многочлен n-й степени
Приведём некоторые утверждения о корнях многочлена вида :
1) Многочлен -й степени имеет не более корней (с учётом их кратностей). Например, многочлен третьей степени не может иметь четыре корня.
2) Многочлен нечётной степени имеет хотя бы один корень. Например, многочлены первой, третьей, пятой и т.д. степени имеют хотя бы один корень. Многочлены чётной степени корней могут и не иметь.
3) Если на концах отрезка значения многочлена имеют разные знаки (т.е. ,), то на интервале находится хотя бы один корень. Это утверждение широко используется для приближенного вычисления корней многочлена.
4) Если число является корнем многочлена вида , то этот многочлен можно представить в виде произведения , где многочлен (-й степени. Другими словами, многочлена вида можно разделить без остатка на двучлен . Это позволяет уравнение -й степени сводить к уравнению (-й степени (понижать степень уравнения).
5) Если уравнение со всеми целыми коэффициентами (причём свободный член ) имеет целый корень , то этот корень является делителем свободного члена . Такое утверждение позволяет подобрать целый корень многочлена (если он есть).
5 этап работы. Показать как применяется теория делимости для решения уравнений высших степеней. Рассмотреть примеры решения уравнений высших степеней , в которых для разложения левой части на множители используется способ деления многочлена на многочлен “уголком”.
Пример 1. Решим уравнение .
Если это уравнение имеет целый корень, то он является делителем свободного члена (-1), т.е. равняется одному из чисел: . Проверка показывает, что корнем уравнения является число -1. Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:
Таким образом, мы фактически разложили левую часть уравнения на множители:
Произведение множителей равно нулю, если один из множителей равен нулю. Получаем два уравнения:
Итак, данное уравнение имеет три корня:
Пример 2. Решим уравнение .
Если это уравнение имеет целый корень, то он является делителем свободного члена (9),т.е. равняется одному из чисел: ;. Проверим:
Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:
Таким образом, мы разложили левую часть уравнения на множители:
Аналогичным образом поступим и с многочленом .
Если это уравнение имеет целый корень, то он является делителем свободного члена (9), т.е. равняется одному из чисел: ;. Проверим:
Значит, многочлен можно представить в виде
произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:
Таким образом, мы разложили левую часть исходного уравнения на множители:
Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три уравнения:
Итак, данное уравнение имеет четыре корня:
6 этап работы. Закрепление изученного материала.
Решите уравнения высших степеней, используя способ деления многочлена на многочлен “уголком”.
7 этап работы. Вывод урока.
Решить уравнения высших степеней можно следующим образом:
- используя формулы для нахождения корней (если они известны);
- используя замену переменной;
- раскладывая многочлен в левой части уравнения на множители, используя способ деления многочлена на многочлен “уголком”.
8 этап работы. Домашнее задание.
Дома решить уравнения высших степеней, используя способ деления многочлена на многочлен “уголком” (раздать листы с заданиями).
Видео:Используем деление уголком для решения уравненийСкачать
Решение уравнения с помощью понижения степени. Деление многочлена на многочлен столбиком
Деление многочлена на многочлен столбиком
Для решения уравнение вида Р(х)=0, где Р(х) — многочлен степени n>2, часто применяют метод понижения степени. Он основывается на таком факте: если число x=b является корнем многочлена P(x), то есть P(b)=0, то многочлен P(x) делится без остатка на двучлен x-b.
После того, как мы разделим многочлен P(x) степени n на двучлен x-b, то мы получим многочлен степени n-1, то есть на единицу меньшей исходного. И дальше процедуру можно повторить.
Если старший коэффициент многочлена P(x) равен 1, то корни многочлена P(x) мы ищем среди делителей свободного члена.
Решим уравнение
Свободный член многочлена в левой части уравнения равен 10.
Делители числа 10: 1; 2; 5; 10.
Проверим, является ли какое-либо из этих чисел корнем многочлена. Для этого последовательно подставим эти значения вместо х в многочлен.
является корнями многочлена , и он делится на двучлены и без остатка.
Разделим многочлен на двучлен x-2 столбиком:
🌟 Видео
Математика без Ху!ни. Деление многочлена на многочлен.Скачать
Деление многочленов | Математика | TutorOnlineСкачать
Деление многочлена на многочлен уголком, в столбикСкачать
Деление многочлена на многочленСкачать
Деление многочлена на многочлен. 10 класс.Скачать
Схема Горнера. 10 класс.Скачать
Метод группировки и метод деления уголком при решении уравнений высших степеней.Скачать
✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис ТрушинСкачать
Итоговое повторение «2. Уравнения». Часть 5/5Скачать
Кубические уравнения. Деление столбиком. Схема Горнера.Скачать
Деление многочлена уголком #ShortsСкачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Уравнения высших степеней. Решение уравнений с помощью деления в столбикСкачать
Как объяснить деление в столбик? Деление чисел уголком. Деление на многозначного на однозначное.Скачать
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Деление многочленов. Теорема Безу. Объяснение на пальцахСкачать
Как делить уголком? Деление столбикомСкачать
Схема Горнера. Объяснение на пальцах. Деление многочленовСкачать