Решение уравнений третьей степени примеры решения

Решение кубических уравнений. Формула Кардано
Решение уравнений третьей степени примеры решенияСхема метода Кардано
Решение уравнений третьей степени примеры решенияПриведение кубических уравнений к трехчленному виду
Решение уравнений третьей степени примеры решенияСведение трёхчленных кубических уравнений к квадратным уравнениям при помощи метода Никколо Тартальи
Решение уравнений третьей степени примеры решенияФормула Кардано
Решение уравнений третьей степени примеры решенияПример решения кубического уравнения

Решение уравнений третьей степени примеры решения

Видео:Решение уравнения третьей степени x³-9x-12=0Скачать

Решение уравнения третьей степени x³-9x-12=0

Схема метода Кардано

Целью данного раздела является вывод формулы Кардано для решения уравнений третьей степени ( кубических уравнений )

a0x 3 + a1x 2 +
+ a2x + a3= 0,
(1)

где a0, a1, a2, a3 – произвольные вещественные числа, Решение уравнений третьей степени примеры решения

Вывод формулы Кардано состоит из двух этапов.

На первом этапе кубические уравнения вида (1) приводятся к кубическим уравнениям, у которых отсутствует член со второй степенью неизвестного. Такие кубические уравнения называют трёхчленными кубическими уравнениями .

На втором этапе трёхчленные кубические уравнения решаются при помощи сведения их к квадратным уравнениям.

Видео:Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

Приведение кубических уравнений к трехчленному виду

Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x 3 + ax 2 + bx + c = 0,(2)

где a, b, c – произвольные вещественные числа.

Заменим в уравнении (2) переменную x на новую переменную y по формуле:

Решение уравнений третьей степени примеры решения(3)

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

то уравнение (2) примет вид

В результате уравнение (2) примет вид

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Если ввести обозначения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

то уравнение (4) примет вид

y 3 + py + q= 0,(5)

где p, q – вещественные числа.

Уравнения вида (5) и являются трёхчленными кубическими уравнениями , у которых отсутствует член со второй степенью неизвестного.

Первый этап вывода формулы Кардано завершён.

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Сведение трёхчленных кубических уравнений к квадратным уравнениям при помощи метода Никколо Тартальи

Следуя методу, примененому Никколо Тартальей (1499-1557) для решения трехчленных кубических уравнений, будем искать решение уравнения (5) в виде

Решение уравнений третьей степени примеры решения(6)

где t – новая переменная.

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

то выполнено равенство:

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Следовательно, уравнение (5) переписывается в виде

Решение уравнений третьей степени примеры решения(7)

Если теперь уравнение (7) умножить на t , то мы получим квадратное уравнение относительно t :

Решение уравнений третьей степени примеры решения(8)

Видео:✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис Трушин

Формула Кардано

Решение уравнения (8) имеет вид:

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

В соответствии с (6), отсюда вытекает, что уравнение (5) имеет два решения:

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

В развернутой форме эти решения записываются так:

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Покажем, что, несмотря на кажущиеся различия, решения (10) и (11) совпадают.

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

С другой стороны,

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

и для решения уравнения (5) мы получили формулу

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

которая и называется «Формула Кардано» .

Замечание . Поскольку у каждого комплексного числа, отличного от нуля, существуют три различных кубических корня, то, для того, чтобы избежать ошибок при решении кубических уравнений в области комплексных чисел, рекомендуется использовать формулу Кардано в виде (10) или (11).

Видео:Кубические уравнения. Деление столбиком. Схема Горнера.Скачать

Кубические уравнения. Деление столбиком. Схема Горнера.

Пример решения кубического уравнения

Пример . Решить уравнение

x 3 – 6x 2 – 6x – 2 = 0.(13)

Решение . Сначала приведем уравнение (13) к трехчленному виду. Для этого в соответствии с формулой (3) сделаем в уравнении (13) замену

x = y + 2.(14)

Следовательно, уравнение (13) принимает вид

y 3 – 18y – 30 = 0.(15)

Теперь в соответствии с формулой (6) сделаем в уравнении (15) еще одну замену

Решение уравнений третьей степени примеры решения(16)

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

то уравнение (15) примет вид

Решение уравнений третьей степени примеры решения(17)

Далее из (17) получаем:

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Отсюда по формуле (16) получаем:

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения

Заметим, что такое же, как и в формуле (18), значение получилось бы, если бы мы использовали формулу

Решение уравнений третьей степени примеры решения

или использовали формулу

Решение уравнений третьей степени примеры решения

Далее из равенства (18) в соответствии с (14) получаем:

Решение уравнений третьей степени примеры решения

Таким образом, мы нашли у уравнения (13) вещественный корень

Решение уравнений третьей степени примеры решения

Замечание 1 . У уравнения (13) других вещественных корней нет.

Замечание 2 . Поскольку произвольное кубическое уравнение в комплексной области имеет 3 корня с учетом кратностей, то до полного решения уравнения (13) остается найти еще 2 корня. Эти корни можно найти разными способами, в частности, применив вариант формулы Кардано для области комплексных чисел. Однако применение такого варианта формулы Кардано значительно выходит за рамки курса математики даже специализированных математических школ.

Видео:Решение уравнений третьей степени (формула Кардано)Скачать

Решение уравнений третьей степени (формула Кардано)

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Видео:Формула Кардано. Решение уравнений третьей степени.Скачать

Формула Кардано. Решение уравнений третьей степени.

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Видео:Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

Как решать уравнения высших степеней, очень лёгкий способ!!!

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Видео:Уравнение четвертой степениСкачать

Уравнение четвертой степени

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

Видео:Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители ДелениеСкачать

Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители Деление

Иррациональные уравнения с кубическими радикалами

Разделы: Математика

Тема: «Иррациональные уравнения вида Решение уравнений третьей степени примеры решения , Решение уравнений третьей степени примеры решения

(Методическая разработка.)

Основные понятия

Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня (радикала) или знаком возведения в дробную степень.

Уравнение вида f(x)=g(x), где хотя бы одно из выражений f(x) или g(x) иррационально является иррациональным уравнением.

Основные свойства радикалов:

  • Все радикалы четной степени являются арифметическими, т.е. если подкоренное выражение отрицательно, то радикал не имеет смысла (не существует); если подкоренное выражение равно нулю, то радикал тоже равен нулю; если подкоренное выражение положительно, то значение радикала существует и положительно.
  • Все радикалы нечетной степени определены при любом значении подкоренного выражения. При этом радикал отрицателен, если подкоренное выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если покоренное выражение положительно.

Методы решения иррациональных уравнений

Решить иррациональное уравнение – значит найти все действительные значения переменной, при подстановке которых в исходное уравнение оно обращается в верное числовое равенство, либо доказать, что таких значений не существует. Иррациональные уравнения решаются на множестве действительных чисел R.

Областью допустимых значений уравнения состоит из тех значений переменной, при которых неотрицательны все выражения, стоящие под знаком радикалов четной степени.

Основными методами решения иррациональных уравнений являются:

а) метод возведения обеих частей уравнения в одну и ту же степень;

б) метод введения новых переменных (метод замен);

в) искусственные приемы решения иррациональных уравнений.

В данной статье остановимся на рассмотрении уравнений определённого выше вида и приведём 6 методов решения таких уравнений.

1 метод. Возведение в куб.

Этот способ требует применения формул сокращённого умножения и не содержит «подводных» камней, т.е. не приводит к появлению посторонних корней.

Пример 1. Решить уравнение Решение уравнений третьей степени примеры решения

Перепишем уравнение в виде Решение уравнений третьей степени примеры решенияи возведём в куб обе его части. Получим уравнение равносильное данному уравнению Решение уравнений третьей степени примеры решения,

Решение уравнений третьей степени примеры решения,

Решение уравнений третьей степени примеры решения,

Решение уравнений третьей степени примеры решенияРешение уравнений третьей степени примеры решенияРешение уравнений третьей степени примеры решения

Пример 2. Решить уравнение Решение уравнений третьей степени примеры решения.

Перепишем уравнение в виде Решение уравнений третьей степени примеры решенияи возведём в куб обе его части. Получим уравнение равносильное данному уравнению

Решение уравнений третьей степени примеры решения,

Решение уравнений третьей степени примеры решения,

Решение уравнений третьей степени примеры решения,

и рассмотрим полученное уравнение как квадратное относительно одного из корней

Решение уравнений третьей степени примеры решения,

Решение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решения,

следовательно, дискриминант равен 0,а уравнение может иметь решение х=-2.

Проверка: Решение уравнений третьей степени примеры решения

Замечание: Проверка может быть опущена, в том случае, если дорешивается квадратное уравнение.

2 метод. Возведение в куб по формуле.

По-прежнему будем возводить уравнение в куб, но при этом пользоваться модифицированными формулами сокращенного умножения.

Решение уравнений третьей степени примеры решенияРешение уравнений третьей степени примеры решения,

(незначительная модификация известной формулы), тогда

Решение уравнений третьей степени примеры решения

Пример3. Решить уравнение Решение уравнений третьей степени примеры решения.

Возведём уравнение в куб с использованием формул, приведённых выше.

Решение уравнений третьей степени примеры решения,

Но выражение Решение уравнений третьей степени примеры решениядолжно быть равно правой части. Поэтому имеем:

Решение уравнений третьей степени примеры решения, откуда

Решение уравнений третьей степени примеры решения.

Теперь при возведении в куб получаем обычное квадратное уравнение:

Решение уравнений третьей степени примеры решения, и два его корня

Решение уравнений третьей степени примеры решения,Решение уравнений третьей степени примеры решения

Оба значения, как показывает проверка, правильные.

Но все ли преобразования здесь равносильны? Прежде чем ответить на этот вопрос, решим ещё одно уравнение.

Пример4. Решить уравнение Решение уравнений третьей степени примеры решения.

Возводя, как и ранее, обе части в третью степень, имеем:

Решение уравнений третьей степени примеры решения.

Откуда (учитывая, что выражение в скобках равно Решение уравнений третьей степени примеры решения), получаем:

Решение уравнений третьей степени примеры решения, значит

Решение уравнений третьей степени примеры решения. ПолучаемРешение уравнений третьей степени примеры решения, Решение уравнений третьей степени примеры решения.Сделаем проверку и убедимся х=0 –посторонний корень.

Ответ: Решение уравнений третьей степени примеры решения.

Ответим на вопрос: «Почему возникли посторонние корни?»

Равенство Решение уравнений третьей степени примеры решениявлечёт равенство Решение уравнений третьей степени примеры решения. Заменим с на –с, получим:

Решение уравнений третьей степени примеры решенияи Решение уравнений третьей степени примеры решения.

Нетрудно проверить тождество

Решение уравнений третьей степени примеры решения,

Итак, если Решение уравнений третьей степени примеры решения, то либо Решение уравнений третьей степени примеры решения, либо Решение уравнений третьей степени примеры решения. Уравнение можно представить в виде Решение уравнений третьей степени примеры решения, Решение уравнений третьей степени примеры решения.

Заменяя с на –с, получаем: если Решение уравнений третьей степени примеры решения, то либо Решение уравнений третьей степени примеры решения, либо Решение уравнений третьей степени примеры решения

Поэтому при использовании этого метода решения обязательно нужно сделать проверку и убедиться что посторонних корней нет.

3 метод. Метод системы.

Пример 5. Решить уравнение Решение уравнений третьей степени примеры решения.

Введём замену, составим и решим систему уравнений.

Пусть Решение уравнений третьей степени примеры решения, Решение уравнений третьей степени примеры решения. Тогда:

Решение уравнений третьей степени примеры решенияоткуда очевидно, что Решение уравнений третьей степени примеры решения

Второе уравнение системы получается таким образом, чтобы линейная комбинация подкоренных выражений не зависела от исходной переменной.

Решение уравнений третьей степени примеры решенияЛегко убедиться , что система не имеет решения, следовательно и исходное уравнение не имеет решения.

Ответ: Корней нет.

Пример 6. Решить уравнение Решение уравнений третьей степени примеры решения.

Введём замену, составим и решим систему уравнений.

Пусть Решение уравнений третьей степени примеры решения, Решение уравнений третьей степени примеры решения. Тогда

Решение уравнений третьей степени примеры решенияРешение уравнений третьей степени примеры решенияРешение уравнений третьей степени примеры решения

Решение уравнений третьей степени примеры решенияили Решение уравнений третьей степени примеры решения

Возвращаясь к исходной переменной имеем:

Решение уравнений третьей степени примеры решениях=0.

4 метод. Использование монотонности функций.

Прежде чем использовать данный метод обратимся к теории.

Нам понадобятся следующие свойства:

  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, то функция y=f(x)+g(x) также возрастает (убывает ) на этом множестве.
  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, при чем обе они принимают неотрицательные значения при всех допустимых х, то функция y=f(x)g(x) возрастает (убывает) на данном множестве.
  • Если функция y=f(x) монотонная, то уравнение f(x)=a имеет не более одного решения.
  • Если функции y=f(x) и y=g(x) имеют разный характер монотонности, то уравнение f(x)=g(x) имеет не более одного решения.
  • Функция вида Решение уравнений третьей степени примеры решениявозрастает при к>0 и убывает при к 30.05.2009

🌟 Видео

11 класс, 3 урок, Уравнения высших степенейСкачать

11 класс, 3 урок, Уравнения высших степеней

Теорема БезуСкачать

Теорема Безу

Решаем быстро и красиво ★ Уравнение четвертой степени ★ x^4+8x-7=0Скачать

Решаем быстро и красиво ★ Уравнение четвертой степени ★ x^4+8x-7=0

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

8 класс. Алгебра. Решение уравнений четвертой степени.Скачать

8 класс. Алгебра. Решение уравнений четвертой степени.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4Скачать

Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4

Теорема Виета для многочлена 3 порядка. 10 класс.Скачать

Теорема Виета для многочлена 3 порядка. 10 класс.

Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столбиСкачать

Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столби
Поделиться или сохранить к себе: