Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Видео:Уравнения, сводящиеся к квадратным. Биквадратное уравнениеСкачать

Уравнения, сводящиеся к квадратным. Биквадратное уравнение

Уравнения, сводящиеся к квадратным уравнениям:
трехчленные уравнения и уравнения
вида
(ax + b)(ax + b + c)(ax +
+ b
+ 2c)(ax + b + 3c) = d , левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии

Существует ряд уравнений, которые удается решить при помощи сведения их к квадратным уравнениям.

К таким уравнениям, в частности, относятся уравнения следующих типов:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примерыТрёхчленные уравнения
Решение уравнений сводящихся к квадратным уравнениям 8 класс примерыУравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии
Решение уравнений сводящихся к квадратным уравнениям 8 класс примерыВозвратные (симметричные) уравнения 3-ей степени
Решение уравнений сводящихся к квадратным уравнениям 8 класс примерыВозвратные (симметричные) уравнения 4-ой степени
Решение уравнений сводящихся к квадратным уравнениям 8 класс примерыОбобщенные возвратные уравнения 4-ой степени

Замечание . Уравнения, носящие название «Биквадратные уравнения» , относятся к типу «Трехчленные уравнения» .

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Трехчленные уравнения

Трёхчленными уравнениями называют уравнения вида

a f 2 (x)+ b f (x) + c = 0,(1)

а также уравнения вида

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры(2)

где a, b, c – заданные числа, а f (x) – некоторая функция.

Для того, чтобы решить трехчленное уравнения вида (1), обозначим

y = f (x),(3)

тогда уравнение (1) станет квадратным уравнением относительно переменной y :

ay 2 + by + c = 0 .(4)

Затем найдем корни уравнения (4), а после этого, подставив каждый из найденных корней в равенство (3), решим полученное уравнение относительно x .

Для того, чтобы решить трехчленное уравнение вида (2), сначала введем обозначение (3), а затем умножим полученное уравнение на знаменатель. В результате уравнение (2) примет вид (4), а схема решения уравнения (4) уже описана выше.

Покажем, как это осуществляется на примерах.

Пример 1 . Решить уравнение

(x 2 – 2x) 2 –
– 2(x 2 – 2x) – 3 = 0 .
(5)

Решение . Если обозначить

y = x 2 – 2x ,(6)

то уравнение (5) превратится в квадратное уравнение

y 2 – 2y – 3 = 0 .(7)

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

В первом случае из равенства (6) получаем:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Во втором случае из равенства (6) получаем:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Пример 2 . Решить уравнение

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры(8)

Решение . Если обозначить

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры,(9)

то уравнение (8) превратится в квадратное уравнение

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

которое эквивалентно уравнению

2y 2 – 3 y – 2 = 0 .(10)

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

В первом случае из равенства (9) получаем уравнение:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Во втором случае из равенства (9) получаем:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Ответ : Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Пример 3 . Решить уравнение

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение . Если обозначить

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры(12)

то уравнение (11) превратится в квадратное уравнение

которое эквивалентно уравнению

y 2 – 5y – 6 = 0 .(13)

В первом случае из равенства (12) получаем уравнение:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Во втором случае из равенства (12) получаем:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Ответ : Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Пример 4 . Решить биквадратное уравнение

x 4 – x 2 – 12 = 0 .(14)

Решение . Если обозначить

y = x 2 ,(15)

то уравнение (14) превратится в квадратное уравнение

y 2 – y – 12 = 0 .(16)

В первом случае из равенства (15) получаем уравнение:

которое решений не имеет.

Во втором случае из равенства (15) получаем:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Пример 5 . Решить уравнение

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение . Если обозначить

y = x 2 – 3x,(18)

уравнение (17) превращается в уравнение

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

которое при умножении на y принимает вид

y 2 + 2y – 8 = 0 .(19)

В первом случае из равенства (18) получаем квадратное уравнение:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

которое решений не имеет.

Во втором случае из равенства (18) получаем:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Ответ : Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Пример 6 . Решить уравнение

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение . Если обозначить

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры,(21)

уравнение (20) превращается в уравнение

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

которое при умножении на y принимает вид

3y 2 – 2y – 1 = 0 .(22)

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

В первом случае из равенства (21) получаем уравнение

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Во втором случае из равенства (21) получаем:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Видео:Решение уравнений сводящихся к квадратным уравнениям. Биквадратные уравнения – 8 класс алгебраСкачать

Решение уравнений сводящихся к квадратным уравнениям. Биквадратные уравнения – 8 класс алгебра

Уравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии

(ax + b)(ax + b +
+ c
)(ax +
+ b
+ 2c)(ax +
+ b
+ 3c) = d ,
(23)

где a, b, c, d – заданные числа, и заметим, что левая часть этого уравнения представляет собой произведение четырёх последовательных членов арифметической прогрессии, первый член которой равен ax+b , а разность равна c .

Схема решения уравнений вида (23) заключается в следующем.

y = ax + b.(24)

Тогда уравнение (23) примет вид:

y (y + c)(y +
+ 2c)(y + 3c) = d .
(25)

Перегруппируем сомножители в левой части уравнения (25) следующим образом:

[y (y + 3c)][(y +
+ c
)(y + 2c)] = d .
(26)

Если раскрыть круглые скобки внутри каждой квадратной скобки из левой части уравнения (26), то получим:

[y 2 + 3cy][y 2 +
+ 3cy + 2c 2 ] = d .
(27)

Если теперь в уравнении (27) обозначить

z = y 2 + 3cy ,(28)

то уравнение (27) станеи квадратным уравнением

z 2 + 2c 2 zd = 0 .(29)

Для того, чтобы найти корни уравнения (23), остаётся решить уравнение (29), затем для каждого корня уравнения (29) решить уравнение (28) относительно y , а затем в каждом из полученных случаев решить уравнение (24) относительно x .

Пример 7 . Решить уравнение

(2x + 3)(2x + 5)(2x +
+
7)(2x + 9) = 384 .
(30)

Решение .Если обозначить

y = 2x + 3,(31)

уравнение (30) превращается в уравнение

y (y + 2)(y +
+
4)(y + 6) = 384 .
(32)

Перегруппируем сомножители в левой части уравнения (32):

[y (y + 6)][(y +
+ 2)(y + 4)] = 384 .
(33)

Если раскрыть круглые скобки внутри каждой квадратной скобки из левой части уравнения (33), то уравнение (33) примет вид:

[y 2 + 6y][y 2 +
+ 6y + 8] = 384 .
(34)

Если теперь обозначить

z = y 2 + 6y ,(35)

то уравнение (34) станет квадратным уравнением

z 2 + 8 z – 384 = 0 .(36)

В первом случае из равенства (35) получаем уравнение:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

которое корней не имеет.

Во втором случае из равенства (35) получаем:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

В первом из этих случаев, из равенства (31) получаем:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Во втором случае из равенства (31) получаем:

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Ответ : Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Видео:Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

Как решать квадратные уравнения. 8 класс. Вебинар | Математика

Решение уравнений, сводящихся к квадратным

Биквадратные уравнения

Биквадратным уравнением называется уравнение вида:

$$ ax^4+bx^2+c = 0, a neq 0 $$

Алгоритм решения биквадратного уравнения

Шаг 1. Ввести новую переменную: $z = x^2 ge 0$.

Переписать уравнение для новой переменной: $az^2+bz+c = 0$

Шаг 2. Решить полученное квадратное уравнение.

Если $D gt 0$, $z_ = frac<-b pm sqrt> $. Проверить условие $z ≥ 0$, если положительных корней нет, решений нет, переход на шаг 4.

Если D = 0,$z_0 = -frac$. Проверить условие $z ge 0$, если корень отрицательный, решений нет, переход на шаг 4.

Если $D lt 0$, решений нет, переход на шаг 4.

Шаг 3.Если после шага 2 остались положительные корни, найти x: $x = pm sqrt$.

Шаг 4. Работа завершена.

Шаг 1. $z = x^2 ge 0, z^2+7z-30 = 0$

$z_1 = -10 lt 0, z_2 = 3 gt 0 $

Шаг 3. Находим корни из положительного $z: x_ = pm sqrt$

Метод разложения на множители

Решение уравнений, в которые переменная x входит с различными натуральными степенями и вещественными коэффициентами, по существу, является поиском корней многочлена.

Число $x_0$ называют корнем многочлена $P_n (x) = a_n x^n+a_ x^ + ⋯ + a_1 x+a_0$ если $P_n (x_0 ) = 0$.

Для многочлена $P_n$ (x) произвольной степени n справедливо следующее.

Если $x = x_0$ является корнем многочлена $P_n$ (x), то $P_n (x) = (x-x_0) P_ (x)$, где $P_ (x)$ — многочлен степени n-1.

Таким образом, разными способами находя корни и формируя скобки, можно постепенно добиваться понижения степени «оставшегося» многочлена, пока не будут найдены все корни.

При разложении многочлена

  • множители вида (x-a) называют линейными множителями ;
  • множители вида $ (x^2+bx+c)$, для которых $D lt 0$, называют неприводимыми квадратичными множителями .

Любой многочлен $P_n$ (x) можно представить в виде конечного числа линейных и/или неприводимых квадратичных множителей.

Причём, такое представление единственно с точностью до порядка множителей.

Для разложения многочленов на множители применяются разные методы:

  • вынесение общего множителя за скобку (см. §19 справочника для 7 класса);
  • группировка (см. §20 справочника для 7 класса);
  • формулы сокращенного умножения (см. §25 справочника для 7 класса);
  • метод неопределённых коэффициентов;
  • выделение полного квадрата и т.п.

Решим уравнение $2x^3-x^2-8x+4 = 0$.

Раскладываем на множители: $x^2 (2x-1)-4(2x-1) = 0$

$$ (x^2-4)(2x-1) = 0 Rightarrow (x-2)(x+2)(2x-1) = 0 $$

Корни уравнения: $x_1 = 2, x_2 = -2, x_3 = frac$

Метод замены переменной

Замена переменной – это уравнение, с помощью которого можно упростить исходное уравнение, и перейти к решению системы из двух более простых уравнений:

$Исходное quad сложное quad уравнение iff <left< begin Новая quad переменная quad (урав. quad связи quad со quad старой quad переменной \ Исходное quad урав. quad в quad «упрощ.» quad виде end right.>$

Например, для биквадратных уравнений:

$$ ax^4+bx^2+c = 0 iff <left< begin z = x^2 ge 0 \ az^2+bz+c = 0 end right.> $$

Можно предложить аналогичные схемы для других уравнений:

$$ ax+b sqrt+c = 0 iff <left< begin z = sqrt ge 0 \ az^2+bz+c = 0 end right.> $$

И, в общем виде, для любой рациональной степени n:

$$ ax^+bx^n+c = 0 iff <left< begin z = x^n \ az^2+bz+c = 0 end right.> , n in Bbb Q $$

В других случаях замена переменной не настолько очевидна.

Но при удачном выборе, этот метод очень упрощает задачу.

Раскроем скобки:$ x^2-x = frac$. Сделаем замену:

$$ z = frac Rightarrow z(z-2) = 24 Rightarrow z^2-2z-24 = 0 Rightarrow (z-6)(z+4) = 0 Rightarrow left[ begin z_1 = -4 \ z_2 = 6 end right.$$

Возвращаемся к исходной переменной x:

$$ left[ begin x^2-x = -4 \ x^2-x = 6 end right. Rightarrow left[ begin x^2-x+4 = 0 \ x^2-x-6 = 0 end right. Rightarrow left[ begin D lt 0, x in varnothing \ (x-3)(x+2) = 0 end right. Rightarrow left[ begin x_1 = -2 \ x_2 = 3 end right. $$

При использовании метода замены переменной не забывайте возвращаться к исходной переменной.

Выделение полного квадрата

Метод выделения полного квадрата является одним из методов разложения на множители. Его идея – представить многочлен в виде разности квадратов двух других многочленов степенью пониже, и разложить разность на две скобки:

$$ P_n (x) = Q_k^2 (x)-R_m^2 (x) = (Q_k (x)-R_m (x))(Q_k (x)+R_m (x)) $$

Такое разложение не всегда возможно.

Рассмотрим выделение полного квадрата для квадратного трёхчлена:

$$ = a Biggl(x+frac Biggr)^2 — frac = a Biggl(x+ frac Biggr)^2- frac, D = b^2-4ac $$

Нами выделен полный квадрат $(x+frac)^2$.

Данное выражение используется для построения и анализа графиков парабол (см. §28 данного справочника).

А его разложение на две линейные скобки, известное как теорема Виета (см. §26 данного справочника), возможно только при условии $D ge 0$.

Решить уравнение $x^4+4x^2-1 = 0$

Выделим полный квадрат и разложим на множители:

$$ left[ begin x^2+2-sqrt = 0 \ x^2+2+sqrt = 0 end right. Rightarrow left[ begin x^2 = sqrt -2 gt 0 \ x^2 = -(2+sqrt) lt 0 end right. Rightarrow x_1,2 = pm sqrt<sqrt-2> $$

Примеры

Пример 1. Решите биквадратные уравнения:

Делаем замену: $2x^4+7x^2-4 = 0 iff <left< begin z = x^2 ge 0 \ 2z^2+7z-4 = 0 end right.>$

Решаем квадратное уравнение: $D = 7^2-4 cdot 2 cdot (-4) = 49+32 = 81 = 9^2$

$$ z = frac = left[ begin z_1 = -4 lt 0 \ z_2 = frac gt 0 end right. $$

Выбираем положительный z и возвращаемся к исходной переменной x:

Делаем замену: $(x+3)^4-10(x+3)^2+24 = 0 iff <left< begin z = (x+3)^2 ge 0 \ z^2-10z+24 = 0 end right.>$

Решаем квадратное уравнение: $z^2-10z+24 = 0 Rightarrow (z-4)(z-6) = 0 Rightarrow left[ begin z_1 = 4 \ z_2 = 6 end right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin (x+3)^2 = 4 \ (x+3)^2 = 6 end right. Rightarrow left[ begin x+3 = pm sqrt \ x+3 = pm sqrt end right. Rightarrow left[ begin x_ = -3 pm 2 \ x_ = -3 pm sqrt end right. Rightarrow left[ begin x_1 = -5 \ x_2 = -1 \ x_ = -3 pm sqrt end right. $$

Пример 2. Решите уравнения аналогичные биквадратным:

Делаем замену: $x+4 sqrt-60 = 0 iff <left< begin z = sqrt ge 0 \ z^2+4z-60 = 0 end right.>$

Решаем квадратное уравнение: $ z^2+4z-60 = 0 Rightarrow (z+10)(z-6) = 0 Rightarrow left[ begin z_1 = -10 \ z_2 = 6 end right.$

Выбираем положительный корень и возвращаемся к исходной переменной:

Делаем замену: $(x-1)^6-7(x-1)^3-8 = 0 iff <left< begin z = (x-1)^3 \ z^2-7z-8 = 0 end right.>$

Решаем квадратное уравнение: $ z^2-7z-8 = 0 Rightarrow (z+1)(z-8) = 0 Rightarrow left[ begin z_1 = -1 \ z_2 = 8 end right.$

При замене куба знак z может быть любым, берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin (x-1)^3 = -1 \ (x-1)^3 = 8 end right. Rightarrow left[ begin x-1 = -1 \ x-1 = 2 end right. Rightarrow left[ begin x_1 = 0 \ x_2 = 3 end right. $$

Пример 3. Решите уравнения с помощью замены переменной:

Заметим, что $(x+3)^2 = x^2+6x+9$. Получаем:

$$ (x^2+6x)^2-(x^2+6x+9) = 33 Rightarrow (x^2+6x)^2-(x^2+6x)-42 = 0 $$

Решаем квадратное уравнение: $ z^2-z-42 = 0 Rightarrow (z+6)(z-7) = 0 Rightarrow left[ begin z_1 = -6 \ z_2 = 7 end right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin x^2+6x = -6 \ x^2+6x = 7 end right. Rightarrow left[ begin x^2+6x+6 = 0 \ x^2+6x-7=0 end right. Rightarrow left[ begin D = 12, x = frac<-6 pm 2 sqrt> \ (x+7)(x-1) = 0 end right. Rightarrow left[ begin x_ = -3 pm sqrt \ x_3 = -7 \ x_4 = 1 end right. $$

Делаем замену: $ frac + frac = 2 iff left[ begin z = x^2+3 ge 3 \ frac + frac = 2 end right.$

Решаем уравнение относительно z:

$$ frac + frac = 2 Rightarrow frac = frac Rightarrow 4(z+1)+5z = 2z(z+1) $$

$$ 2z^2+2z-9z-4 = 0 Rightarrow 2z^2-7z-4 = 0 $$

$$ D = 7^2-4 cdot 2 cdot (-4) = 49+32 = 81 = 9^2 $$

$$ z = frac = left[ begin z_1 = — frac lt 3 \ z_2 = 4 gt 3 end right. $$

Выбираем корень больше 3 и возвращаемся к исходной переменной:

$$ x^2+3 = 4 Rightarrow x^2 = 1 Rightarrow x_ = pm 1$$

Пример 4*. Решите уравнения:

Приведём это уравнение к биквадратному.

В линейных множителях (x+a) выберем все a =

Найдем их среднее арифметическое (см. §52 справочника для 7 класса)

Замена переменных $z = x+a_$:

Упрощаем уравнение, используя формулу разности квадратов:

$$ (z^2-9)(z^2-1) = 945 Rightarrow z^4-10z^2+9 = 945 Rightarrow z^4-10z^2-936 = 0 $$

Получили биквадратное уравнение.

Делаем замену: $z^4-10z^2-936 = 0 iff <left< begin t = z^2 ge 0 \ t^2-10t-936 = 0 end right.> $

Решаем квадратное уравнение:

$$ D = 100+4 cdot 936 = 3844 = 62^2, t = frac = left[ begin t_1 = -26 lt 0 \ t_2 = 36 gt 0 end right. $$

Выбираем положительный корень и возвращаемся к переменной z:

$$ z = pm sqrt = pm sqrt = pm 6 $$

Возвращаемся к исходной переменной x:

$$ x = z-4 = pm 6-4 = left[ begin x_1 = -10 \ x_2 = 2 end right. $$

$$ z- frac =2,1 |times z (z neq 0) $$

$$ z^2-2,1z-1 = 0 Rightarrow D = 2,1^2+4 = 8,41 = 2,9^2; z = frac = left[ begin z_1 = -0,4 \ z_2 = 2,5 end right. $$

Берём оба корня и возвращаемся к исходной переменной.

$$ left[ begin frac = -0,4 \ frac = 2,5 end right. Rightarrow left[ begin x^2+1 = -0,4x \x^2+1 = 2,5x end right. Rightarrow left[ begin x^2+0,4x+1 = 0 \ x^2-2,5x+1 = 0 end right. $$

В первом уравнении $D = 0,4^2-4 lt 0$, решений нет.

Во втором уравнении (x-2)(x-1/2) = 0 $Rightarrow left[ begin x_1 = frac \ x_2 = 2 end right.$

Видео:Решение уравнений, сводящихся к квадратным. §23 алгебра 8 классСкачать

Решение уравнений, сводящихся к квадратным. §23  алгебра 8 класс

Решение уравнений, сводящихся к квадратным уравнениям

В этом материале рассмотрим примеры уравнений, которые для решения требуется свести к квадратным.

Задание 1. Решить уравнение

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Составим равносильную систему исходному уравнению и решим ее.

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Задание 2. Решить уравнение

Решение уравнений сводящихся к квадратным уравнениям 8 класс примеры

Проведем преобразование заданного уравнения:

📺 Видео

Алгебра 8. Решение уравнений, сводящихся к квадратнымСкачать

Алгебра 8. Решение уравнений, сводящихся к квадратным

Биквадратные уравнения. 8 класс алгебра.Скачать

Биквадратные уравнения. 8 класс алгебра.

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Урок 99 Решение целых рациональных уравнений, сводящихся к квадратным уравнениям (8 урок)Скачать

Урок 99  Решение целых рациональных уравнений, сводящихся к квадратным уравнениям (8 урок)

Решение уравнений, сводящихся к квадратным уравнениям (урок 2)Скачать

Решение уравнений, сводящихся к квадратным уравнениям (урок 2)

5 Лайфхаков Которые Помогут Решить Биквадратное УравнениеСкачать

5 Лайфхаков Которые Помогут Решить Биквадратное Уравнение

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)Скачать

Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

8 класс изучение новой темы Решение уравнений, сводящихся к квадратным уравнениямСкачать

8 класс изучение новой темы Решение уравнений, сводящихся к квадратным уравнениям

Квадратное уравнение. 8 класс.Скачать

Квадратное уравнение. 8 класс.
Поделиться или сохранить к себе: