Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров. В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число. Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.
Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.
- Нахождение неизвестного слагаемого
- Нахождение неизвестного вычитаемого или уменьшаемого
- Нахождение неизвестного множителя
- Нахождение неизвестного делимого или делителя
- Последовательное применение правил
- Тригонометрические уравнения и неравенства с примерами решения и образцами выполнения
- Тригонометрические формулы
- Сумма и разность синусов. Сумма и разность косинусов
- Уравнение cos х = а
- Уравнение sin х= а
- Уравнение tg x = а
- Решение тригонометрических уравнений
- Уравнения, сводящиеся к квадратам
- Уравнения вида a sin х + b cos х = с
- Уравнения, решаемые разложением левой части на множители
- Тригонометрические уравнения и неравенства — основные понятия и определения
- Уравнения, разрешенные относительно одной из тригонометрических функций
- Уравнение sin х = а
- Уравнение cos x = a
- Уравнение tg x = a
- Уравнение ctg х = а
- Некоторые дополнения
- Способ приведения к одной функции одного и того же аргумента
- Некоторые типы уравнений, приводящихся к уравнениям относительно функции одного аргумента
- Способ разложения на множители
- Общие сведения об уравнениях
- Что такое уравнение?
- Выразить одно через другое
- Правила нахождения неизвестных
- Компоненты
- Равносильные уравнения
- Умножение на минус единицу
- Приравнивание к нулю
- Альтернатива правилам нахождения неизвестных
- Когда корней несколько
- Когда корней бесконечно много
- Когда корней нет
- Буквенные уравнения
- Линейные уравнения с одним неизвестным
Видео:Решить уравнения, используя формулы сокращенного умножения.Сумма и квадрат разности. Алгебра 7 классСкачать
Нахождение неизвестного слагаемого
Допустим, у нас есть некоторое количество шариков в двух вазах, например, 9 . Мы знаем, что во второй вазе 4 шарика. Как найти количество во второй? Запишем эту задачу в математическом виде, обозначив число, которое нужно найти, как x. Согласно первоначальному условию, это число вместе с 4 образуют 9 , значит, можно записать уравнение 4 + x = 9 . Слева у нас получилась сумма с одним неизвестным слагаемым, справа – значение этой суммы. Как найти x ? Для этого надо использовать правило:
Для нахождения неизвестного слагаемого надо вычесть известное из суммы.
В данном случае мы придаем вычитанию смысл, который является обратным смыслу сложения. Иначе говоря, есть определенная связь между действиями сложения и вычитания, которую можно в буквенном виде выразить так: если a + b = c , то c − a = b и c − b = a , и наоборот, из выражений c − a = b и c − b = a можно вывести, что a + b = c .
Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.
Возьмем то уравнение, что у нас получилось выше: 4 + x = 9 . Согласно правилу, нам нужно вычесть из известной суммы, равной 9 , известное слагаемое, равное 4 . Вычтем одно натуральное число из другого: 9 — 4 = 5 . Мы получили нужное нам слагаемое, равное 5 .
Обычно решения подобных уравнений записывают следующим образом:
- Первым пишется исходное уравнение.
- Далее мы записываем уравнение, которое получилось после того, как мы применили правило вычисления неизвестного слагаемого.
- После этого пишем уравнение, которое получилось после всех действий с числами.
Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:
4 + x = 9 , x = 9 − 4 , x = 5 .
Мы можем проверить правильность полученного ответа. Подставим то, что у нас получилось, в исходное уравнение и посмотрим, выйдет ли из него верное числовое равенство. Подставим 5 в 4 + x = 9 и получим: 4 + 5 = 9 . Равенство 9 = 9 верное, значит, неизвестное слагаемое было найдено правильно. Если бы равенство оказалось неверным, то нам следовало бы вернуться к решению и перепроверить его, поскольку это знак допущенной ошибки. Как правило, чаще всего это бывает вычислительная ошибка или применение неверного правила.
Видео:Сумма и разность кубов двух выражений. 7 класс.Скачать
Нахождение неизвестного вычитаемого или уменьшаемого
Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.
Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.
Например, у нас есть уравнение x — 6 = 10 . Неизвестно уменьшаемое. Согласно правилу, нам надо прибавить к разности 10 вычитаемое 6 , получим 16 . То есть исходное уменьшаемое равно шестнадцати. Запишем все решение целиком:
x − 6 = 10 , x = 10 + 6 , x = 16 .
Проверим получившийся результат, добавив получившееся число в исходное уравнение: 16 — 6 = 10 . Равенство 16 — 16 будет верным, значит, мы все подсчитали правильно.
Переходим к следующему правилу.
Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.
Воспользуемся правилом для решения уравнения 10 — x = 8 . Мы не знаем вычитаемого, поэтому нам надо из 10 вычесть разность, т.е. 10 — 8 = 2 . Значит, искомое вычитаемое равно двум. Вот вся запись решения:
10 — x = 8 , x = 10 — 8 , x = 2 .
Сделаем проверку на правильность, подставив двойку в исходное уравнение. Получим верное равенство 10 — 2 = 8 и убедимся, что найденное нами значение будет правильным.
Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.
Видео:Квадрат суммы и квадрат разности двух выражений. 7 класс.Скачать
Нахождение неизвестного множителя
Посмотрим на два уравнения: x · 2 = 20 и 3 · x = 12 . В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.
Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.
Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a · b = c при a и b , не равных 0 , c : a = b , c : b = c и наоборот.
Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2 . Проводим деление натуральных чисел и получаем 10 . Запишем последовательность равенств:
x · 2 = 20 x = 20 : 2 x = 10 .
Подставляем десятку в исходное равенство и получаем, что 2 · 10 = 20 . Значение неизвестного множителя было выполнено правильно.
Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x · 0 = 11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на 0 , а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.
Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от 0 . Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.
Видео:Разность квадратов двух выражений. 7 класс.Скачать
Нахождение неизвестного делимого или делителя
Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.
Для нахождения неизвестного делимого нужно умножить делитель на частное.
Посмотрим, как применяется данное правило.
Решим с его помощью уравнение x : 3 = 5 . Перемножаем между собой известное частное и известный делитель и получаем 15 , которое и будет нужным нам делимым.
Вот краткая запись всего решения:
x : 3 = 5 , x = 3 · 5 , x = 15 .
Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5 . Верное числовое равенство – свидетельство правильного решения.
Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.
Переходим к следующему правилу.
Для нахождения неизвестного делителя нужно разделить делимое на частное.
Возьмем простой пример – уравнение 21 : x = 3 . Для его решения разделим известное делимое 21 на частное 3 и получим 7 . Это и будет искомый делитель. Теперь оформляем решение правильно:
21 : x = 3 , x = 21 : 3 , x = 7 .
Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21 : 7 = 3 , так что корень уравнения был вычислен верно.
Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на 0 . Если же частным будет нуль, возможны два варианта. Если делимое также равно нулю и уравнение выглядит как 0 : x = 0 , то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней. А вот уравнение с частным, равным 0 , с делимым, отличным от 0 , решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5 : x = 0 , которое не имеет ни одного корня.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Последовательное применение правил
Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.
У нас есть уравнение вида 3 · x + 1 = 7 . Вычисляем неизвестное слагаемое 3 · x , отняв от 7 единицу. Получим в итоге 3 · x = 7 − 1 , потом 3 · x = 6 . Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.
Вот краткая запись решения еще одного уравнения ( 2 · x − 7 ) : 3 − 5 = 2 :
( 2 · x − 7 ) : 3 − 5 = 2 , ( 2 · x − 7 ) : 3 = 2 + 5 , ( 2 · x − 7 ) : 3 = 7 , 2 · x − 7 = 7 · 3 , 2 · x − 7 = 21 , 2 · x = 21 + 7 , 2 · x = 28 , x = 28 : 2 , x = 14 .
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Тригонометрические уравнения и неравенства с примерами решения и образцами выполнения
Корень уравнения есть число, которое, будучи подставленным в
уравнение вместо обозначающей его буквы или вида, приводит к
исчезновению всех его членов.
И. Ньютон
Видео:Куб суммы и куб разности двух выражений. 7 класс.Скачать
Тригонометрические формулы
В курсе алгебры рассматривались синус, косинус и тангенс
произвольного угла, выраженного в градусах или радианах.
Там же были доказаны основные формулы, которые
использовались для преобразований тригонометрических выражений.
Напомним эти формулы:
1. Основное тригонометрическое тождество:
2. Зависимость между синусом, косинусом, тангенсом и котангенсом:
Ньютон Исаак (1643— 1727) — английский математик, физик, механик, астроном; основоположник современной механики; одновременно с немецким математиком Г. Лейбницем ему принадлежит разработка дифференциального и интегрального исчислений.
3. Формулы сложения:
4. Формулы синуса и косинуса двойного угла:
5. Формулы приведения:
Формулы приведения запоминать необязательно. Для того
чтобы записать любую из них, можно руководствоваться
следующими правилами:
1) В правой части формулы который
2) Если в левой части формулы угол равен или
то синус заменяется на косинус, тангенс —
на котангенс и наоборот. Если угол равен то замены
не происходит.
Например, покажем, как с помощью этих правил можно
получить формулу приведения для
По первому правилу в правой части формулы нужно поставить знак >,
так как если то a косинус во второй четверти отрицателен. По второму правилу косинус нужно заменить на синус, следовательно,
6. Формулы синуса, косинуса, тангенс угла
7. Формулы синуса и косинуса угла
тангенса угла
Приведем несколько примеров применения формул (1) — (9).
Пример:
Вычислить , если и
Сначала найдем . Из формулы (1) Так как в третьей четверти то По формулам (2) находим
Пример:
Используя формулы (1), (3) и (4), получаем:
Пример:
Вычислить
Используя формулы (8) и (9), получаем:
По формулам приведения находим:
Ответ.
Сумма и разность синусов. Сумма и разность косинусов
Пример:
Используя формулу сложения и формулу синуса двойного
угла, получаем:
Эту задачу можно решить проще, если использовать формулу
суммы синусов:
С помощью этой формулы получаем:
Докажем теперь справедливость формулы (1).
Обозначим
Тогда и поэтому
Наряду с формулой (1) используются формула разности
синусов, а также формулы суммы и разности косинусов:
Формулы (3) и (4) доказываются так же, как и формула (1);
формула (2 ) получается из формулы ( 1 ) заменой на
(докажите самостоятельно).
Пример:
Вычислить
Пример:
Преобразовать в произведение
Пример:
Доказать, что наименьшее значение выражения равно а наибольшее равно
Преобразуем данное выражение в произведение:
Так как наименьшее значение косинуса равно — 1, а наибольшее равно 1, то наименьшее значение данного выражения
равно а наибольшее равно
Уравнение cos х = а
Из курса алгебры известно, что значения косинуса заключены
в промежутке [— 1; 1], т. е.
Поэтому если |а |> 1 , то уравнение cos x = a не имеет корней. Например, уравнение cos x = — 1,5 не имеет корней.
Пример:
Решить уравнение
Напомним, что cos х — абсцисса точки единичной окружности, полученной поворотом точки Р (1; 0) вокруг начала координат на угол х. Абсциссу, равную имеют две точки окружности
и (рис. 18). Так как , то точка получается из точки Р (1; 0) поворотом на угол , а также на
углы где . . . . Точка получается из точки Р (1; 0) поворотом на угол , f также на углы где . . . . Итак, все корни уравнения — можно найти по формулам Вместо этих двух формул обычно пользуются одной:
Пример:
Решить уравнение
Абсциссу, равную , имеют две точки окружности
и (рис. 19). Так как , то угол
а потому угол . Следовательно, все корни уравнения
можно найти по формуле
Таким образом, каждое из уравнений
и имеет бесконечное множество корней. На отрезке каждое из этих уравнений имеет только один корень: — корень уравнения и
— корень уравнения . Число называют арккосинусом числа и записывают:
а число — арккосинусом числа и записывают:
Вообще уравнение , где , имеет на отрезке только один корень. Если , то корень заключен в промежутке ; если а
Например, так как и так как
и
Аналогично тому, как это сделано при решении задач 1 и 2, можно показать, что все корни уравнения , где , выражаются формулой
Пример:
Решить уравнение cos x = — 0,75.
По формуле (2) находим
Значение arccos ( — 0,75) можно приближенно найти на рисунке 21, измеряя угол РОМ транспортиром.
Приближенные значения арккосинуса можно также находить
с помощью специальных таблиц или микрокалькулятора. На
пример, значение arccos (—0,75) можно вычислить на
микрокалькуляторе МК-54 по программе
Итак,
В данном случае переключатель микрокалькулятора Р-ГРД-Г
был установлен в положение Р (радиан).
Если вычисления проводить в градусной мере, то переключатель микрокалькулятора Р-ГРД-Г следует установить в положение Г (градус). Программа вычислений остается прежней:
Итак, .
Пример:
Решить уравнение (4 cos х — 1) (2 cos 2x + 1)=0.
Ответ. ,
Можно доказать, что для любого справедлива
формула
Эта формула позволяет выражать значения арккосинусов
отрицательных чисел через значения арккосинусов
положительных чисел. Например:
Из формулы (2) следует, что корни уравнения cos х = а при а = 0,
а = 1, а = — 1 можно находить по более простым формулам:
Задача 5. Решить уравнение
По формуле (6) получаем откуда
Уравнение sin х= а
Известно, что значения синуса заключены в промежутке
[— 1; 1], т. е. Поэтому если |а |> 1 , то
уравнение sin x = a не имеет корней. Например, уравнение
sin x = 2 не имеет корней.
Пример:
Решить уравнение
Напомним, что sin x — ордината точки единичной окружности, полученной поворотом точки Р (1; 0) вокруг начала координат на угол x. Ординату, равную , имеют две точки окружности и (рис. 22). Так как — , то точка получается из точки Р(1; 0) поворотом на угол , а также на
углы где ……. Точка получается из точки Р (1; 0) поворотом на угол , а также на углы где ……. Итак, все корни уравнения можно найти по формулам
Эти формулы объединяются в одну:
В самом деле, если n — четное число, т. е. n = 2k, то из формулы (1) получаем а если n — нечетное число, т. е. , то из формулы (1) получаем
О т в е т .
Пример:
Решить уравнение
Ординату, равную имеют две точки единичной окружности и (рис. 23), где . Следовательно, все корни уравнения можно найти по формулам
Эти формулы объединяются в одну:
В самом деле, если n = 2k, то по формуле (2) получаем , а если n = 2k — 1, то по формуле (2) находим ..
Ответ.
Итак, каждое из уравнений и имеет
бесконечное множество корней. На отрезке
каждое из этих уравнений имеет только один корень: — корень уравнения и — корень уравнения . Число называют арксинусом числа и записывают: ; число — называют арксинусом числа и пишут:
Вообще уравнение sin x = a, где , на отрезке имеет только один корень. Если , то корень заключен в промежутке ; если а
Например, так как и так как и
Аналогично тому, как это сделано при решении задач 1 и 2 можно показать, что корни уравнения sin x = a, где выражаются формулой
Пример:
Решить уравнение .
По формуле (4) находим
Значение можно приближенно найти из рисунка 25,
измеряя угол РОМ транспортиром.
Значения арксинуса можно находить с помощью специальных
таблиц или с помощью микрокалькулятора. Например, значение можно вычислить на микрокалькуляторе МК-54 по
программе
Итак,
При этом переключатель микрокалькулятора Р-ГРД-Г был установлен в положение Р (радиан).
Пример:
Решить уравнение (3 sin х — 1) (2 sin 2х + 1) = 0.
Можно доказать, что для любого справедлива
формула
Эта формула позволяет находить значения арксинусов отри
цательных чисел через значения арксинусов положительных
чисел. Например:
Отметим, что из формулы (4) следует, что корни уравнения
sin x = a при а = 0 , а = 1 , а = — 1 можно находить по более
простым формулам:
Пример:
Решить уравнение sin 2х = 1.
По формуле (7) имеем откуда
Уравнение tg x = а
Известно, что тангенс может принимать любое действительное
значение. Поэтому уравнение tg x = a имеет корни при любом
значении а.
Пример:
Решить уравнение
Построим углы, тангенсы которых равны Для этого проведем через точку Р (рис. 26) прямую, перпендикулярную РО,
и отложим отрезок через точки М и О проведем пря
мую. Эта прямая пересекает единичную окружность в двух диа
метрально противоположных точках и . Из прямоугольного треугольника РОМ находим , откуда .
Таким образом, точка получается из точки Р (1; 0) поворотом
вокруг начала координат на угол а также на углы , где , … .
Точка получается поворотом точки Р (1; 0) на угол
а также на углы , где … .
Итак, корни уравнения можно найти по формулам
Эти формулы объединяются в одну
Пример:
Решить уравнение
Углы, тангенсы которых равны указаны на рисунке 27, где Из прямоугольного треугольника РОМ находим , т.е. . Таким образом, точка получается поворотом точки P(1; 0) вокруг начала
координат на угол , а также на углы где k = ± 1, ± 2,….. Точка получается поворотом точки Р (1; 0) на углы .
Поэтому корни уравнения можно найти по формуле
Итак, каждое из уравнений и имеет
бесконечное множество корней. На интервале — каждое из этих уравнений имеет только один корень: — корень уравнения и — корень уравнения . Число называют арктангенсом числа и записывают: ; число — называют арктангенсом числа и пишут: .
Вообще уравнение tg х = а для любого имеет на интервале только один корень. Если , то корень
заключен в промежутке ; если а
Например, , так как ; и так как и .
Аналогично тому, как это сделано при решении задач 1 и 2, можно показать, что все корни уравнения tg x = a, где выражаются формулой
Пример:
Решить уравнение tg х = 2.
По формуле (2) находим
Значение arctg 2 можно приближенно найти из рисунка 29,
измеряя угол РОМ транспортиром.
Приближенные значения арктангенса можно также найти по
таблицам или с помощью микрокалькулятора.
Например, значение arctg 2 можно вычислить на МК-54 по
программе
Итак,
Пример:
При этих значениях х первая скобка левой части исходного
уравнения обращается в нуль, а вторая не теряет смысла, так
как из равенства tg x = — 4 следует, что
Следовательно, найденные значения х являются корнями исходного уравнения.
Эти значения x также являются корнями исходного уравнения, так как при этом вторая скобка левой части уравнения
равна нулю, а первая скобка не теряет смысла.
Ответ.
Можно доказать, что для любого справедлива формула
Эта формула позволяет выражать значения арктангенсов
отрицательных чисел через значения арктангенсов положительных чисел.
Например:
Видео:Алгебра 7 класс (Урок№30 - Сумма кубов. Разность кубов.)Скачать
Решение тригонометрических уравнений
Формулы корней простейших тригонометрических уравнений sin x = a, cos x = a, tg х = а. К этим уравнениям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение формул преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.
Уравнения, сводящиеся к квадратам
Пример:
Решить уравнение
Это уравнение является квадратным относительно sin х.
Обозначив sin x= y, получим уравнение Его корни
Таким образом, решение исходного уравнения свелось к решению простейших уравнений sin х = 1 и sin х = — 2.
Уравнение sin x = l имеет корни уравнение
sin x = — 2 не имеет корней.
Ответ.
Пример:
Решить уравнение
Заменяя на получаем:
Обозначая sin х = у, получаем откуда
1) sin х = — 3 — уравнение не имеет корней, так как | — 3 | > 1.
2)
Ответ.
Пример:
Решить уравнение
Используя формулу получаем:
Ответ.
Пример:
Решить уравнение tg x — 2 ctg x + 1 = 0 .
Так как то уравнение можно записать в виде
Умножая обе части уравнения на tg x, получаем:
Отметим, что левая часть исходного уравнения имеет смысл,
если и Так как для найденных корней и то исходное уравнение равносильно уравнению
Ответ.
Пример:
Обозначив sin 6 x = у, получим уравнение откуда
Уравнения вида a sin х + b cos х = с
Пример:
Решить уравнение 2 sin x —3 cos x = 0.
Поделив уравнение на cos x, получим 2tg x — 3 = 0,
При решении этой задачи обе части уравнения 2 sin x — cos x = 0 были поделены на cos x. Напомним, что при делении
уравнения на выражение, содержащее неизвестное, могут быть
потеряны корни. Поэтому нужно проверить, не являются ли
корни уравнения cos x = 0 корнями данного уравнения. Если
cos x = 0, то из уравнения 2 sin x — cos x = 0 следует, что sin x = 0. Однако sin х и cos х не могут одновременно равняться нулю, так как они связаны равенством Следовательно, при
делении уравнения a sin х + b cos x = 0, где cos x
(или sin x) корни этого уравнения не теряются.
Пример:
Решить уравнение 2 sin x + cos x = 2.
Используя формулы
и записывая правую часть уравнения в виде , получаем
Поделив это уравнение на
Обозначая получаем уравнение откуда
Ответ.
Пример:
Решить уравнение sin 2x — sin x — cos x — 1 = 0.
Выразим sin 2 x через sin x + cos x , используя тождество
Обозначим sin x + cos x = t, тогда и уравнение примет вид , откуда
2) Уравнение sin x + cos x = 2 не имеет корней, так как
и равенства sin x = 1, cos x = l одновременно не могут
выполняться.
Ответ.
Уравнения, решаемые разложением левой части на множители
Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на
множители.
Пример:
Решить уравнение sin 2х — sin х = 0.
Используя формулу для синуса двойного аргумента, запишем уравнение в виде 2 sin х cos х — sin х = 0.
Вынося общий множитель sin х за скобки, получаем
sin x (2 cos x — 1) = 0
Ответ.
Пример:
Решить уравнение cos Зх + sin 5x = 0.
Используя формулу приведения , запишем уравнение в виде
Используя формулу для суммы косинусов, получаем:
Ответ.
Пример:
Решить уравнение sin 7 x + sin 3 х = 3 cos 2х.
Применяя формулу для суммы синусов, запишем уравнение в виде
Уравнение cos2x = 0 имеет корни а уравнение не имеет корней.
Ответ.
Пример:
Решить уравнение
уравнение примет вид:
Заметим, что числа вида содержатся среди чисел вида так как если n = 3k, то
Следовательно, первая серия корней содержится во второй.
Ответ.
Часто бывает трудно усмотреть, что две серии корней, полу
ченных при решении тригонометрического уравнения, имеют об
щую часть. В этих случаях ответ можно оставлять в виде двух
серий. Например, ответ к задаче 12 можно было записать и так:
Пример:
Эти значения х являются корнями исходного уравнения, так
как при этом первая скобка левой части уравнения равна нулю,
а вторая не теряет смысла.
При этих значениях х вторая скобка левой части исходного
уравнения равна нулю, а первая скобка не имеет смысла. Поэтому
эти значения не являются корнями исходного уравнения.
Ответ.
Пример:
Решить уравнение
Выразим
Так как то
откуда
Поэтому исходное уравнение можно записать так:
2) уравнение — корней не имеет.
Ответ.
Решение тригонометрического уравнения состоит из двух частей: 1) преобразование тригонометрического выражения к простейшему виду; 2) решение простейшего тригонометрического уравнения. Первая часть сложна из-за множества применяемых формул как тригонометрических, так и алгебраических. Применяются такие приемы как разложение на множители, преобразование суммы или разности тригонометрических функций в произведение и, наоборот, произведения в сумму. Достаточно часто тригонометрические уравнения сводятся к линейным и квадратным уравнениям и уравнениям с корнями. Тригонометрические уравнения во всяком случае имеют ограничения, содержащиеся в тангенсе и котангенсе, т.к. , , то здесь и .Простейшими тригонометрическими уравнениями называются уравнения вида: ; и
1) Решение уравнения . Арксинусом числа называется число, обозначаемое , синус которого равен , при этом . Поэтому решение уравнения записывается: Этому решению соответствуют две точки на окружности:
Напоминаем, что ось — это ось синусов, и значение синуса
отмечается на оси .
2) Решение уравнения . Арккосинусом числа называется число, обозначаемое , косинус которого равен , при этом Поэтому решение уравнения записывается: Этому решению соответствуют две точки на окружности:
Эти решения отмечены на окружности.
Напоминаем, что ось — ось косинусов, и значение косинуса отмечается на оси .
3) Решение уравнения Арктангенсом числа называется число, обозначаемое , тангенс которого равен , при этом . Поэтому решение уравнения записывается: Этому решению соответствуют две точки на окружности:
Напоминаем, что значение тангенса отмечается на оси тангенсов, которая параллельна оси и касается единичной окружности в крайней правой точке.
Там, где возможно, и заменяются табличными значениями. Соответствующая таблица и тригонометрические формулы приведены в разделе преобразования тригонометрических выражений. Там же рассмотрены примеры таких преобразований.
Здесь использована специальная формула, отличная от стандартной для уравнения
Существуют следующие специальные формулы:
Следует заметить также, что буква для обозначения целого числа может быть выбрана любая, но принято брать Если уравнение имеет два и более решений, эти буквы принято брать различными.
Т.к. решения 1-го и 2-го уравнений должны совпадать, то, как видно на окружности, единственно возможная точка соответствует решению
Эта система, как видно на окружности, решений не имеет
Этот материал взят со страницы решения задач по математике:
Возможно вам будут полезны эти страницы:
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Тригонометрические уравнения и неравенства — основные понятия и определения
В этой главе мы рассмотрим некоторые уравнения, а также простейшие системы уравнений, содержащие неизвестную иод знаком тригонометрических функций. Такие уравнения называются тригонометрическими уравнениями.
Приведем некоторые примеры тригонометрических уравнений и их систем:
1) ; 2) ; 3) ; 4) 5) 6) .
Решение различных типов тригонометрических уравнений большей частью основано на сведении их к некоторым простейшим уравнениям, которые мы рассмотрим ниже. При этом остаются в силе общие правила, относящиеся к решению уравнений. В частности, данное уравнение не всегда приводится к простейшей форме с помощью одних лишь равносильных преобразований. Поэтому следует проверить найденные решения, подставляя их в исходное уравнение.
Тригонометрические уравнения слишком разнообразны для того, чтобы пытаться дать их общую классификацию или общий метод решения. Мы можем указать лишь способы решения некоторых типов таких уравнений.
Уравнения, разрешенные относительно одной из тригонометрических функций
При решении различных тригонометрических уравнений мы будем часто приходить к некоторым простейшим уравнениям, решения которых следует запомнить. Приведем эти уравнения. Для того чтобы можно было дать геометрическую иллюстрацию к этим уравнениям, будем считать х углом в радианной мере.
Уравнение sin х = а
имеет решение при . Для вывода общей формулы, которая заключает в себе все корни нашего уравнения, воспользуемся рис. 127. Допустим, что мы нашли какой-то корень уравнения sin х = а:
Тогда, в силу периодичности функции sin х, имеем
т.е. и числа вида , где k = 0, ±1, ±2, …, удовлетворяют уравнению (139.1). Заметим еще, что и
т. е. также удовлетворяет уравнению (139.1). Следовавательно также удовлетворяют данному уравнению. Следовательно, зная одно какое-то значение , удовлетворяющее уравнению sin х = а, мы можем получить две серии значений аргумента, удовлетворяющих этому же уравнению:
где k= 0, ±1, ±2, …
В качестве будем, как правило, брать arcsin а.
Объединив две серии (139.2) и (139.3) корней данного уравнения sin х = а одной формулой, мы будем записывать в дальнейшем его общее решение (совокупность всех корней) в виде
где n = 0, ±1, ±2, … и .
Поясним формулу (139.4) и другим способом, с помощью рис. 139.
Известно, что sin x = а (на рис. 139 ОA = 1, ).
Уравнению (139.1) удовлетворят углы:
а) положительные: и (k = 0, +1, +2, …);
б) отрицательные: и (k = 0, —1, —2, …).
Все эти углы можно задать одной формулой (139.4), и, обратно, любой угол, полученный по формуле (139.4), есть угол либо вида а), либо вида б). Проверим, например, обратное утверждение для положительных углов.
Если (четное число), то из (139.4) получаем
если же (нечетное число), то из (139.4) получаем
Аналогично проводится проверка и для отрицательных углов.
Пример:
sin x = 1/2.
Решение:
Так как , то .
Пример:
.
Решение:
Так как , то .
Замечание. При выводе формулы (139.4) мы воспользовались рис. 127, на котором и . Очевидно, что при помощи этой формулы получаются все корни уравнения sin x = a. Формула (139.4) остается в силе и тогда, когда , а также при а = 0, 1 или —1. Однако эти последние случаи удобней рассмотреть особо.
Допустим, что а = 1 или a = — 1. Корни уравнения sin х = 1 можно записать так:
где n = 0, ±1, ±2, …, а корни уравнения sin x = — 1 можно записать так:
где n = 0, ±1, ±2…. . Допустим теперь, что а = 0. Корни уравнения sin x = 0 можно записать так:
Уравнение cos x = a
имеет решение при . Для вывода общей формулы корней уравнения (140.1) воспользуемся рис. 128. Допустим, что мы нашли какое-нибудь решение уравнения (140.1): .
Тогда в силу периодичности , т. е. и числа вида , где n = 0, ±1, ±2, …, удовлетворяют уравнению cos х = а. В силу четности косинуса ; применив еще свойство периодичности, мы получим, что числа вида также удовлетворяют уравнению cos х = а. (На рис. 128 мы видим, что .) Следовательно, зная одно какое-либо значение , удовлетворяющее уравнению cos x = a, мы можем получить две серии значений аргумента, удовлетворяющих этому же уравнению:
где n = 0, ±1, ±2, …
В качестве будем, как правило, брать arccos а.
Объединив две серии (140.2) и (140.3) корней уравнения cos x = a одной формулой, мы будем писать в дальнейшем его общее решение (совокупность всех корней) в виде
где n = 0, ±1, ±2, … и .
Рекомендуем читателю пояснить формулу (140.4) с помощью рисунка, аналогичного рис. 139.
Пример:
.
Решение:
Пример:
cos x = — х/2.
Решение:
Пример:
cos х = 0,995.
Решение:
(см. приложение II).
Замечание. При выводе формулы (140.4) мы воспользовались рис. 128, на котором и . Очевидно, что при помощи этой формулы получаются все корни уравнения cos x = a. Рекомендуем читателю доказать, что формулой (140.4) можно пользоваться и во всех остальных случаях (—1
Уравнение cos x = l имеет корни:
Уравнение cos x = 0 имеет корни:
Уравнение tg x = a
имеет решение при любом а (). Воспользуемся рис. 129 для вывода общей формулы, которая заключает в себе все корни уравнения (141.1). Допустим, что мы нашли какое-нибудь решение уравнения (141.1), т. е. . Тогда, в силу периодичности, , т.е. и числа вида , где n = 0, ±1. ±2, …, удовлетворяют уравнению tg x = a. Следовательно, зная одно какое-то значение удовлетворяющее уравнению tg x = а, мы можем получить общее решение (совокупность всех корней) в виде
В качестве будем, как правило, брать arctg a. Итак, общее решение уравнения tg х = а выражается формулой
где n = 0, ±1, ±2, … и .
Пример:
.
Решение:
Пример:
.
Решение:
Пример:
tg x = —1,9648.
Решение:
(см. приложение II).
Уравнение ctg х = а
имеет решение при любом а (). Для вывода общей формулы корней уравнения (142.1) воспользуемся рис. 130. Допустим, что мы нашли какое-нибудь решение уравнения (142.1), т. е. . Тогда, в силу периодичности, , т. е. и числа вида , где n = 0, ±1, ±2, …. удовлетворяют уравнению ctg х = а. Следовательно, зная одно какое-то значение , удовлетворяющее уравнению ctg х = а, мы можем получить общее решение в виде
В качестве будем, как правило, брать arcctg a. Итак, общее решение уравнения ctg х = а выражается формулой
где n = 0, ±1, ±2, … и .
Пример:
.
Решение:
Пример:
.
Решение:
Пример:
ctg х = —28,64.
Решение:
. Воспользовавшись формулой , будем иметь
(см. приложение I). Следовательно,
Некоторые дополнения
Если в уравнениях sin x = a, cos х = а, tg х = а и ctg x = a известно, что х — угол в градусной мере, то общие решения нужно записывать по-другому.
Для уравнения sin x = a, где , нужно писать:
где n = 0, ±1, ±2, … и .
Для уравнения cos х = а, где , нужно писать:
где n = 0, ±1, ±2, … и .
Для уравнения tg х = а, где а — любое число, нужно писать:
где n = 0, ±1, ±2, … и — 90°
где n = 0, ±1, ±2. … и 0°
б) Нельзя, однако, писать
Разберем примеры уравнений, непосредственно сводящихся к уже рассмотренным.
Пример:
Решить уравнение .
Решение:
sinх = 1 /]/2, откуда согласно (143.1) имеем х — 180°и + (—1)»45°, где я = 0, ±1, ±2, …
Пример:
Решить уравнение .
Решение:
, откуда согласно (140.4) имеем , где n = 0, ±1, ±2, …
Пример:
Решить уравнение 3 sin х — 4 = 0.
Решение:
Из нашего уравнения получаем равносильное уравнение sin x = 4/3, которое решений не имеет, ибо не выполняется условие . Следовательно, первоначальное уравнение также не имеет решений.
Пример:
Решить уравнение 3 tg х + 1 = 0.
Решение:
tg x = —1/3, откуда согласно (141.3) имеем , где n = 0, ±1, ±2, …, или .
Замечание. Ответ можно записать так:
где n = 0, ±1, ±2, …
Пример:
Решить уравнение 3 ctg x + 2 = 0.
Решение:
ctg x = —2/3, откуда согласно (142.3) имеем , где n = 0, ±1, ±2, …, или .
Пример:
Решить уравнение 2 sin 5x + l = 0.
Решение:
Записав уравнение в виде sin 5x = —1/2, найдем отсюда сначала промежуточный аргумент , откуда получим общее решение данного уравнения , где n = 0, ±1, ±2,…
Видео:Алгебра 7 класс (Урок№20 - Сумма и разность многочленов.)Скачать
Способ приведения к одной функции одного и того же аргумента
Сущность способа: Мы получили решения уравнений вида sin x = a, cos х = а, tg x = a и cxg x = a. Во многих случаях решение тригонометрических уравнений сводится к решению основных элементарных уравнений после выполнения ряда алгебраических действий.
Так, пусть имеется уравнение, левая часть которого содержит х только под знаком одной тригонометрической функции, например:
Во всех этих случаях задача решения уравнения распадается на две:
1) Решение алгебраического уравнения относительно новой неизвестной t = sin x, t = tg x, t = cos x.
2) Решение уравнений вида sin x = a, cos x = a, tg x = a.
Пример:
Решение:
1) Положив sin x = t, приходим к алгебраическому уравнению (в данном случае к квадратному уравнению) относительно новой неизвестной t:
Решив уравнение , получим и .
2) Задача решения уравнения свелась к решению двух тригонометрических уравнении:
Уравнение sin x = — 3 решений не имеет. Общее решение уравнения sin x = 1/2 имеет вид
Так как при переходе от тригонометрического уравнения к двум тригонометрическим уравнениям мы нигде не теряли и не получали посторонних корней, то решение является решением первоначального уравнения .
В большинстве случаев, однако, приходится исходное уравнение еще преобразовывать так, чтобы оно приобрело нужный вид:
В п. 145 показаны приемы таких преобразований.
Некоторые типы уравнений, приводящихся к уравнениям относительно функции одного аргумента
1) Рассмотрим уравнение типа
где a, b и с — какие-то действительные числа. Изучим случай, когда . Разделиз обе части уравнения (145.1) на , придем к следующему уравнению, содержащему только t = tg х:
Заметим, что уравнения (145.1) и (145.2) будут равносильны, ибо мы предполагаем, что . (Те значения х, при которых cos x = 0, не являются корнями уравнения (145.1) при .) Далее следует найти значения t = tg x из уравнения (145.2) и, если они окажутся действительными, отыскать соответствующие серии решений х.
Пример:
Решение:
Разделим обе части уравнения на . (Те значения х, при которых cos x = 0, не являются корнями данного уравнения, ибо при этом , следовательно, потери корней не происходит). Получим уравнение , откуда .
а) , ;
б) , .
где п = 0, ±1, ±2, …
Замечание:
где , сводится к уравнению типа (145.1), если его записать сначала так:
Пример:
Запишем данное уравнение так:
После этого будем иметь
Разделим обе части последнего уравнения на . (Те значения х, для которых cos x = 0, не являются корнями данного уравнения.) Получим уравнение
откуда и . Решив последние уравнения, получим решения первоначального уравнения:
2) Рассмотрим уравнение типа
где a, b и с — какие-то действительные числа. Пусть . Заменив через , мы придем к уравнению
Из уравнения (145.6) находим возможные значения для t = соs x; естественно, что они будут иметь смысл лишь в случае . Рассмотрим несколько примеров. Пример 3. Решить уравнение
Решение. Заменяя через , придем к уравнению , откуда cos x = 1 и cos x = —1/2. Уравнение cos x = l имеет решение , а уравнение cos x = —1/2 — решение . Совокупность значений и является решением данного уравнения.
Пример:
Решение:
Заменив через , придем к уравнению
откуда cos x = 1/2 и cos x = —3/2. Последнее уравнение не имеет решений, ибо не выполнено условие . /Мы получаем одну серию решений данного уравнения: .
3) Рассмотрим уравнение тина
где a, b и с—какие-то действительные числа. Oграничимся рассмотрением примеров.
Пример:
Решение:
Заменив через , придем к уравнению
откуда sin x = 1/2 и sin x = —1/4. Оба последних уравнения имеют соответственно решения
Совокупность значений и является множеством всех решений данного уравнения.
Пример:
Решение:
Заменив через , придем к уравнению
откуда и . Последнее уравнение не имеет решения, ибо не выполнено условие . Мы получаем одну серию решении первоначального уравнения:
4) Рассмотрим уравнение типа
где .
Деля обе части уравнения на , получим
где n = 0, ±1, ±2, … Заметим, что, предположив , мы не потеряли корней, ибо если cos x = 0, то .
Пример:
Решение:
Разделим обе части уравнения на , получим , откуда .
5) Если в уравнение входят тригонометрические функции от различных аргументов, то и в этом случае иногда представляется возможным выразить их все через одну тригонометрическую функцию одного и того же аргумента.
Пример:
Решение:
Заменив через , придем к уравнению
откуда cos 2х = — l/3.
Следовательно, и (n = 0, ±1, ±2, …).
Пример:
Решить уравнение .
Решение:
Заменив sin 2x через 2sin x cos x, придем к уравнению или . Последнее уравнение распадается на два:
Первое уравнение имеет корни (n = 0, ±1, ±2, …).
Второе уравнение после деления на дает ctg x = 2, откуда (n = 0, ±1, ±2, …).
Решениями первоначального уравнения и будут значения и . Заметим, что в нашем случае деление обеих частей уравнения б) на sinx не привело к потере корней, ибо те значения х, при которых sin x обращается в нуль, не являются корнями первоначального уравнения.
Пример:
Решение:
Умножим обе части уравнения на 2 и, заменив 2sin x cos x на sin 2х, получим sin 2x cos 2x = 1/4. С последним уравнением поступим опять так же, получим sin 4x = 1/2, откуда . Окончательно имеем
Пример:
Решение:
Подставив найденное значение для в исходное уравнение, получим . Далее имеем
Последнее уравнение распадается на два:
Первое уравнение имеет корни (n = 0, ± 1, ± 2, …). Второе уравнение запишем в виде . Приравняв нулю числитель (1 — 2cos x), получим корни второго уравнения: .
Способ разложения на множители
1) Если в уравнении, приведенном к виду f(x) = 0, его левая часть f(x) разлагается на множители, то, как указано в п. 54, следует приравнять каждый из этих множителей к нулю. Получится несколько отдельных уравнений; корни каждого из них будут корнями основного уравнения, если только они входят в о. д. з. каждого из множителей левой части уравнения.
Все полученные решения объединяются в одну совокупность решений первоначального уравнения. Заметим, что этот способ мы уже фактически применяли при решении примеров 9 и 11 из п. 145.
Рассмотрим е;це несколько примеров.
Пример:
Решить уравнение sin x ctg 2x = 0.
Решение:
Согласно предыдущему будем искать отдельно решения двух уравнений: a) sin x = 0 и б) ctg 2x = 0. Первое уравнение имеет корни (n = 0, ±1, ±2, …). Второе уравнение имеет корни (n = 0, ±1, ±2, …). Проверка показывает, что решениями первоначального уравнения будет лишь совокупность значений , а значения не удовлетворяют данному уравнению, ибо при теряет смысл второй множитель ctg 2х.
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Общие сведения об уравнениях
Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.
С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.
В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.
Видео:7 класс, 24 урок, Формулы сокращённого умноженияСкачать
Что такое уравнение?
Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.
Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .
А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.
Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.
Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет
Говорят, что число 2 является корнем или решением уравнения 3 + x = 5
Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.
Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.
Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.
Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.
Видео:Сложение и вычитание многочленов. Алгебра, 7 классСкачать
Выразить одно через другое
Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.
Рассмотрим следующее выражение:
Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10
Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.
Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.
Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:
Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.
При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.
Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:
2 есть 10 − 8
То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:
Число 2 есть разность числа 10 и числа 8
Число 2 есть разница между числом 10 и числом 8.
Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.
Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:
Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2
Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:
В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:
Пример 2. Рассмотрим равенство 8 − 2 = 6
Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:
Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:
Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6
Пример 3. Рассмотрим равенство 3 × 2 = 6
Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2
Вернем получившееся равенство в первоначальное состояние:
Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3
Пример 4. Рассмотрим равенство
Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5
Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:
Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3
Видео:Алгебра 8. Урок 3 - Сложение и вычитание дробейСкачать
Правила нахождения неизвестных
Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.
Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.
В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.
Чтобы выразить число 2, мы поступили следующим образом:
То есть из суммы 10 вычли слагаемое 8.
Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x
В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого
Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:
Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8
А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:
Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x
Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:
В результате получается верное числовое равенство. Значит уравнение решено правильно.
Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.
В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2
Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.
В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность
Чтобы выразить число 8, мы поступили следующим образом:
То есть сложили разность 6 и вычитаемое 2.
Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x
В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого
Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:
Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.
А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2
Если вычислить правую часть, то можно узнать чему равна переменная x
Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного вычитаемого
Для нахождения неизвестного вычитаемого предусмотрено следующее правило:
Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.
А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6
Вычисляем правую часть и находим значение x
Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.
В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение
Чтобы выразить число 3 мы поступили следующим образом:
То есть разделили произведение 6 на множитель 2.
Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного множимого.
Для нахождения неизвестного множимого предусмотрено следующее правило:
Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.
Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.
А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.
Вычисление правой части позволяет нам найти значение переменной x
Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .
В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:
Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.
Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.
А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.
Вычисление правой части равенства позволяет узнать чему равно x
Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:
Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.
Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9
Отсюда .
Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3
Отсюда .
Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.
Чтобы выразить число 15 мы поступили следующим образом:
То есть умножили частное 3 на делитель 5.
Теперь представим, что в равенстве вместо числа 15 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного делимого.
Для нахождения неизвестного делимого предусмотрено следующее правило:
Чтобы найти неизвестное делимое, нужно частное умножить на делитель.
Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.
А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5
Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .
Теперь представим, что в равенстве вместо числа 5 располагается переменная x .
В этом случае переменная x берет на себя роль неизвестного делителя.
Для нахождения неизвестного делителя предусмотрено следующее правило:
Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.
А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3
Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .
Итак, для нахождения неизвестных мы изучили следующие правила:
- Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
- Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
- Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
- Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
- Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
- Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
- Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Видео:7 класс, 21 урок, Сложение и вычитание многочленовСкачать
Компоненты
Компонентами мы будем называть числа и переменные, входящие в равенство
Так, компонентами сложения являются слагаемые и сумма
Компонентами вычитания являются уменьшаемое, вычитаемое и разность
Компонентами умножения являются множимое, множитель и произведение
Компонентами деления являются делимое, делитель и частное
В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.
Пример 1. Найти корень уравнения 45 + x = 60
45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:
Вычислим правую часть, получим значение x равное 15
Значит корень уравнения 45 + x = 60 равен 15.
Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.
Пример 2. Решить уравнение
Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x
В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.
При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:
Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:
Вычислим правую часть получившегося уравнения:
Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение
При этом переменная x является не просто множителем, а неизвестным множителем
Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:
Вычислим правую часть, получим значение переменной x
Для проверки найденный корень отправим в исходное уравнение и подставим вместо x
Получили верное числовое равенство. Значит уравнение решено правильно.
Пример 3. Решить уравнение 3x + 9x + 16x = 56
Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.
Приведем подобные слагаемые в левой части данного уравнения:
Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:
Отсюда x равен 2
Видео:Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать
Равносильные уравнения
В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.
Уравнения называют равносильными, если их корни совпадают.
Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства
Согласно порядку действий, в первую очередь выполняется умножение:
Подставим корень 2 во второе уравнение 28x = 56
Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.
Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.
Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.
Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение
Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.
Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.
Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.
Пример 1. Решить уравнение
Вычтем из обеих частей уравнения число 10
Приведем подобные слагаемые в обеих частях:
Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.
Отсюда .
Вернемся к исходному уравнению и подставим вместо x найденное значение 2
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2
Пример 2. Решить уравнение 4(x + 3) = 16
Раскроем скобки в левой части равенства:
Вычтем из обеих частей уравнения число 12
Приведем подобные слагаемые в обеих частях уравнения:
В левой части останется 4x , а в правой части число 4
Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4
Отсюда
Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1
Пример 3. Решить уравнение
Раскроем скобки в левой части равенства:
Прибавим к обеим частям уравнения число 8
Приведем подобные слагаемые в обеих частях уравнения:
В левой части останется 2x , а в правой части число 9
В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5
Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом
Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.
Рассмотрим следующее уравнение:
Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство
Получается верное равенство. Значит число 2 действительно является корнем уравнения .
Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.
Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:
Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:
Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.
На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.
Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x
Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.
Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.
Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса
Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:
Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.
Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.
Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.
Пример 1. Решить уравнение
При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.
В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:
Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8
Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:
В результате останется простейшее уравнение
Ну и нетрудно догадаться, что корень этого уравнения равен 4
Вернемся к исходному уравнению и подставим вместо x найденное значение 4
Получается верное числовое равенство. Значит уравнение решено правильно.
При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.
Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:
От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:
Пример 2. Решить уравнение
Умнóжим обе части уравнения на 15
В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5
Перепишем то, что у нас осталось:
Раскроем скобки в правой части уравнения:
Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:
Приведем подобные слагаемые в обеих частях, получим
Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 5
Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.
Пример 3. Решить уравнение
Умнóжим обе части уравнения на 3
В левой части можно сократить две тройки, а правая часть будет равна 18
Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 9
Получается верное числовое равенство. Значит уравнение решено правильно.
Пример 4. Решить уравнение
Умнóжим обе части уравнения на 6
В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:
Сократим в обеих частях уравнениях то, что можно сократить:
Перепишем то, что у нас осталось:
Раскроем скобки в обеих частях уравнения:
Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:
Приведем подобные слагаемые в обеих частях:
Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7
Вернемся к исходному уравнению и подставим вместо x найденное значение 4
Получилось верное числовое равенство. Значит уравнение решено правильно.
Пример 5. Решить уравнение
Раскроем скобки в обеих частях уравнения там, где это можно:
Умнóжим обе части уравнения на 15
Раскроем скобки в обеих частях уравнения:
Сократим в обеих частях уравнения, то что можно сократить:
Перепишем то, что у нас осталось:
Раскроем скобки там, где это можно:
Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:
Приведем подобные слагаемые в обеих частях уравнения:
Найдём значение x
В получившемся ответе можно выделить целую часть:
Вернемся к исходному уравнению и подставим вместо x найденное значение
Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B
Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B
Найдем значение выражения, находящегося в переменной А.
Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно
Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.
Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.
Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x
Подставим найденное значение 2 вместо x в исходное уравнение:
Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:
Выполним сокращение в каждом слагаемом:
Перепишем то, что у нас осталось:
Решим это уравнение, пользуясь известными тождественными преобразованиями:
Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.
Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7
Этим методом мы тоже будем пользоваться часто.
Видео:РАЗНОСТЬ КВАДРАТОВ #shorts #егэ #математика #огэ #разность #профильныйегэСкачать
Умножение на минус единицу
Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.
Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .
Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.
Рассмотрим уравнение . Чему равен корень этого уравнения?
Прибавим к обеим частям уравнения число 5
Приведем подобные слагаемые:
А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x
То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:
Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .
или разделить обе части уравнения на −1 , что еще проще
Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице
Получилось верное числовое равенство. Значит уравнение решено верно.
Теперь попробуем умножить обе части уравнения на минус единицу:
После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10
Корень этого уравнения, как и уравнения равен 5
Значит уравнения и равносильны.
Пример 2. Решить уравнение
В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .
Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.
Так, умножение уравнения на −1 можно записать подробно следующим образом:
либо можно просто поменять знаки всех компонентов:
Получится то же самое, но разница будет в том, что мы сэкономим себе время.
Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3
Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.
Пример 3. Решить уравнение
Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:
Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:
Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:
Видео:Формулы сокращенного умножения | Математика | TutorOnlineСкачать
Приравнивание к нулю
Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.
В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x
Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:
Приведем подобные слагаемые в левой части:
Прибавим к обеим частям 77 , и разделим обе части на 7
Видео:Контрольная работа. Уравнения с МОДУЛЕМСкачать
Альтернатива правилам нахождения неизвестных
Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.
К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2
Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5
Уравнения вида мы решали выражая неизвестное слагаемое:
Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:
Далее разделить обе части на 2
В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .
Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:
В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:
Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.
Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.
Видео:Уравнения. 5 классСкачать
Когда корней несколько
Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .
В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).
То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.
Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:
Пример 2. Решить уравнение
Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).
Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:
Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:
Когда корней бесконечно много
Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.
Пример 1. Решить уравнение
Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x
Пример 2. Решить уравнение
Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x
Когда корней нет
Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид
Пусть
Пример 2. Решить уравнение
Раскроем скобки в левой части равенства:
Приведем подобные слагаемые:
Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .
Буквенные уравнения
Уравнение может содержать не только числа с переменными, но и буквы.
Например, формула нахождения скорости является буквенным уравнением:
Данное уравнение описывает скорость движения тела при равноускоренном движении.
Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .
Умнóжим обе части уравнения на t
В правой части переменные t сократим на t и перепишем то, что у нас осталось:
В получившемся уравнении левую и правую часть поменяем местами:
У нас получилась формула нахождения расстояния, которую мы изучали ранее.
Попробуем из уравнения определить время. Для этого нужно выразить переменную t .
Умнóжим обе части уравнения на t
В правой части переменные t сократим на t и перепишем то, что у нас осталось:
В получившемся уравнении v × t = s обе части разделим на v
В левой части переменные v сократим на v и перепишем то, что у нас осталось:
У нас получилась формула определения времени, которую мы изучали ранее.
Предположим, что скорость поезда равна 50 км/ч
А расстояние равно 100 км
Тогда буквенное уравнение примет следующий вид
Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t
либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t
Затем разделить обе части на 50
Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x
Вычтем из обеих частей уравнения a
Разделим обе части уравнения на b
Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.
Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:
Видим, что второе решение намного проще и короче.
Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.
Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x
Раскроем скобки в обеих частях уравнения
Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.
В левой части вынесем за скобки множитель x
Разделим обе части на выражение a − b
В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x
Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.
Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:
Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:
Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.
Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:
Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x
Приведем левую часть уравнения к общему знаменателю:
Умнóжим обе части на a
В левой части x вынесем за скобки
Разделим обе части на выражение (1 − a)
Линейные уравнения с одним неизвестным
Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.
Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».
Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.
Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.
Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».
Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.
Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.
Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.
Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.
Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a
Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .
Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.
В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.