Решение уравнений с понижением степени

Видео:10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степениСкачать

10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степени

Решение уравнения с помощью понижения степени. Деление многочлена на многочлен столбиком

Деление многочлена на многочлен столбиком

Для решения уравнение вида Р(х)=0, где Р(х) — многочлен степени n>2, часто применяют метод понижения степени. Он основывается на таком факте: если число x=b является корнем многочлена P(x), то есть P(b)=0, то многочлен P(x) делится без остатка на двучлен x-b.

После того, как мы разделим многочлен P(x) степени n на двучлен x-b, то мы получим многочлен степени n-1, то есть на единицу меньшей исходного. И дальше процедуру можно повторить.

Если старший коэффициент многочлена P(x) равен 1, то корни многочлена P(x) мы ищем среди делителей свободного члена.

Решим уравнение Решение уравнений с понижением степени

Свободный член многочлена в левой части уравнения равен 10.

Делители числа 10: 1; 2; 5; 10.

Проверим, является ли какое-либо из этих чисел корнем многочлена. Для этого последовательно подставим эти значения вместо х в многочлен.

Решение уравнений с понижением степени

Решение уравнений с понижением степени

Решение уравнений с понижением степениявляется корнями многочлена Решение уравнений с понижением степени, и он делится на двучлены Решение уравнений с понижением степении Решение уравнений с понижением степенибез остатка.

Разделим многочлен Решение уравнений с понижением степенина двучлен x-2 столбиком:

  • Видео:14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

    14. Дифференциальные уравнения второго порядка, допускающие понижение порядка

    Урок алгебры в 10-м классе (занятие элективного курса) по теме «Методы решения уравнений высших степеней»

    Презентация к уроку

    На занятии изучается методика решения уравнений высших степеней. Рассматриваются два метода: разложение на множители и замена переменной. Понижение степени уравнений с помощью деления многочленов по схеме Горнера и приведение различных уравнений к замене переменной. Дана историческая справка исследования уравнений высших степеней. Представлена презентация урока.

    Метод разложения на множители.

    Этот метод основан на применении теоремы Безу. Если число α является корнем многочлена P(x) степени n, то его можно представить в виде P(x) = (x — α)Q(x), где Q(x) — многочлен степени (n-1).Теорема Безу: “Остаток от деления многочлена Р(х) на двучлен (x — α) равен P(α), т.е. значению многочлена при x = α” Таким образом, если известен хотя бы один корень уравнения Р(х)=0 степени n, то с помощью теоремы Безу можно свести задачу к решению уравнения степени (n-1), понизить степень уравнения. Теорема. Пусть несократимая дробь p/q является корнем уравнения a0x n + a1x n-1 + . + ax-1x+ an = 0 с целыми коэффициентами, тогда число p – является делителем свободного члена an, а q – делителем старшего коэффициента a0. У многочлена с целыми коэффициентами целые корни являются делителями свободного члена. Таким образом, зная корень многочлена, его легко разложить на множители, т.е. разделить P(x) на (x — α) “углом” или по схеме Горнера.

    Видео:Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.Скачать

    Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.

    Решение уравнений высших степеней

    В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

    Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

    Видео:Дифференциальные уравнения высших порядков, допускающие понижение порядкаСкачать

    Дифференциальные уравнения высших порядков, допускающие понижение порядка

    Уравнения высшей степени с целыми коэффициентами

    Все уравнения, имеющие вид a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n — 1 и осуществив замену переменной вида y = a n x :

    a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n — 1 · a n n — 1 · x n — 1 + … + a 1 · ( a n ) n — 1 · x + a 0 · ( a n ) n — 1 = 0 y = a n x ⇒ y n + b n — 1 y n — 1 + … + b 1 y + b 0 = 0

    Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n — 1 + … + a 1 x + a 0 = 0 .

    Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать

    13. Как решить дифференциальное уравнение первого порядка?

    Схема решения уравнения

    Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x — x 1 · P n — 1 ( x ) = 0 . Здесь x 1 является корнем уравнения, а P n — 1 ( x ) представляет собой частное от деления x n + a n x n — 1 + … + a 1 x + a 0 на x — x 1 .

    Подставляем остальные выписанные делители в P n — 1 ( x ) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде ( x — x 1 ) ( x — x 2 ) · P n — 2 ( x ) = 0 .Здесь P n — 2 ( x ) будет частным от деления P n — 1 ( x ) на x — x 2 .

    Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x — x 1 x — x 2 · … · x — x m · P n — m ( x ) = 0 . Здесь P n — m ( x ) является многочленом n — m -ной степени. Для подсчета удобно использовать схему Горнера.

    Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

    У нас в итоге получилось уравнение P n — m ( x ) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

    Покажем на конкретном примере, как применяется такая схема решения.

    Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 — x — 3 = 0 .

    Решение

    Начнем с нахождений целых корней.

    У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , — 1 , 3 и — 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

    При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 — 1 — 3 = 0 , значит, единица будет корнем данного уравнения.

    Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 — x — 3 на ( х — 1 ) в столбик:

    Решение уравнений с понижением степени

    Значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

    Перебираем возможные делители дальше, но подставляем их в равенство x 3 + 2 x 2 + 4 x + 3 = 0 :

    1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 ( — 1 ) 3 + 2 · ( — 1 ) 2 + 4 · — 1 + 3 = 0

    У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный — 1 .

    Делим многочлен x 3 + 2 x 2 + 4 x + 3 на ( х + 1 ) в столбик:

    Решение уравнений с понижением степени

    x 4 + x 3 + 2 x 2 — x — 3 = ( x — 1 ) ( x 3 + 2 x 2 + 4 x + 3 ) = = ( x — 1 ) ( x + 1 ) ( x 2 + x + 3 )

    Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с — 1 :

    — 1 2 + ( — 1 ) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 ( — 3 ) 2 + ( — 3 ) + 3 = 9 ≠ 0

    Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

    Оставшиеся корни будут корнями выражения x 2 + x + 3 .

    D = 1 2 — 4 · 1 · 3 = — 11 0

    Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = — 1 2 ± i 11 2 .

    Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

    x iкоэффициенты многочлена
    112— 1— 3
    111 + 1 · 1 = 22 + 2 · 1 = 4— 1 + 4 · 1 = 3— 3 + 3 · 1 = 0

    В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

    После нахождения следующего корня, равного — 1 , мы получаем следующее:

    x iкоэффициенты многочлена
    1243
    112 + 1 · ( — 1 ) = 14 + 1 · ( — 1 ) = 33 + 3 · ( — 1 ) = 0

    Далее мы приходим к разложению x — 1 x + 1 x 2 + x + 3 = 0 . Потом, проверив оставшиеся делители равенства x 2 + x + 3 = 0 , вычисляем оставшиеся корни.

    Ответ: х = — 1 , х = 1 , x = — 1 2 ± i 11 2 .

    Условие: решите уравнение x 4 — x 3 — 5 x 2 + 12 = 0 .

    Решение

    У свободного члена есть делители 1 , — 1 , 2 , — 2 , 3 , — 3 , 4 , — 4 , 6 , — 6 , 12 , — 12 .

    Проверяем их по порядку:

    1 4 — 1 3 — 5 · 1 2 + 12 = 7 ≠ 0 ( — 1 ) 4 — ( — 1 ) 3 — 5 · ( — 1 ) 2 + 12 = 9 ≠ 0 2 4 · 2 3 — 5 · 2 2 + 12 = 0

    Значит, x = 2 будет корнем уравнения. Разделим x 4 — x 3 — 5 x 2 + 12 на х — 2 , воспользовавшись схемой Горнера:

    x iкоэффициенты многочлена
    1— 1— 5012
    21— 1 + 1 · 2 = 1— 5 + 1 · 2 = — 30 — 3 · 2 = 312 — 6 · 2 = 0

    В итоге мы получим x — 2 ( x 3 + x 2 — 3 x — 6 ) = 0 .

    Проверяем делители дальше, но уже для равенства x 3 + x 2 — 3 x — 6 = 0 , начиная с двойки.

    2 3 + 2 2 — 3 · 2 — 6 = 0

    Значит, 2 опять будет корнем. Разделим x 3 + x 2 — 3 x — 6 = 0 на x — 2 :

    x iкоэффициенты многочлена
    11— 3— 6
    211 + 1 · 2 = 3— 3 + 3 · 2 = 3— 6 + 3 · 2 = 0

    В итоге получим ( x — 2 ) 2 · ( x 2 + 3 x + 3 ) = 0 .

    Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

    Решим квадратное уравнение:

    x 2 + 3 x + 3 = 0 D = 3 2 — 4 · 1 · 3 = — 3 0

    Получаем комплексно сопряженную пару корней: x = — 3 2 ± i 3 2 .

    Ответ: x = — 3 2 ± i 3 2 .

    Условие: найдите для уравнения x 4 + 1 2 x 3 — 5 2 x — 3 = 0 действительные корни.

    Решение

    x 4 + 1 2 x 3 — 5 2 x — 3 = 0 2 x 4 + x 3 — 5 x — 6 = 0

    Выполняем домножение 2 3 обеих частей уравнения:

    2 x 4 + x 3 — 5 x — 6 = 0 2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0

    Заменяем переменные y = 2 x :

    2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0 y 4 + y 3 — 20 y — 48 = 0

    В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = — 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = — 2 2 = — 1 и x = y 2 = 3 2 .

    Ответ: x 1 = — 1 , x 2 = 3 2

    Советуем также ознакомиться с материалами, посвященными решению кубических уравнений и уравнений четвертой степени.

    📹 Видео

    ДУ, допускающие понижение порядка, когда нет Y| poporyadku.schoolСкачать

    ДУ, допускающие понижение порядка, когда нет Y| poporyadku.school

    3D Решите уравнение (метод понижения степени)Скачать

    3D Решите уравнение (метод понижения степени)

    ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

    ЛОДУ 2 порядка c постоянными коэффициентами

    0711 Тригонометрические уравнения, решаемые с помощью формул понижения степениСкачать

    0711 Тригонометрические уравнения, решаемые с помощью формул понижения степени

    Как решать тригонометрические уравнения с помощью формул понижения степени. Тригонометрия #46Скачать

    Как решать тригонометрические уравнения с помощью формул понижения степени. Тригонометрия #46

    Теорема БезуСкачать

    Теорема Безу

    Дифференциальные уравнения, 7 урок, Дифференциальные уравнения, допускающие понижение порядкаСкачать

    Дифференциальные уравнения, 7 урок, Дифференциальные уравнения, допускающие понижение порядка

    Понижение порядка дифференциального уравнения. Решение задачиСкачать

    Понижение порядка дифференциального уравнения. Решение задачи

    Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

    Как решать уравнения высших степеней, очень лёгкий способ!!!

    ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКАСкачать

    ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА

    решение тригонометрического уравнения методом понижения степени cosСкачать

    решение тригонометрического уравнения методом понижения степени cos

    Решение тригонометрического уравнения методом понижения степениСкачать

    Решение тригонометрического уравнения методом понижения степени

    Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

    Математика| Преобразование тригонометрических выражений. Формулы и задачи
  • Поделиться или сохранить к себе: