Решение уравнений с помощью обратной теоремы виета

Теорема Виета, обратная формула Виета и примеры с решением для чайников

Теорема Виета помогает решать квадратные уравнения путём подбора. В этой статье даны определения, доказательства, формулы и примеры решений квадратных уравнений для чайников.

Видео:Теорема Виета. 8 класс.Скачать

Теорема Виета. 8 класс.

Что такое теорема Виета

Решение уравнений с помощью обратной теоремы виета

Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета

Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).

Если более подробно, то т еорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.

При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Видео:ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Доказательство теоремы Виета

Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны Решение уравнений с помощью обратной теоремы виетаи, соответственно, Решение уравнений с помощью обратной теоремы виета.

Допустим у нас есть уравнение: Решение уравнений с помощью обратной теоремы виета. У этого уравнения есть такие корни: Решение уравнений с помощью обратной теоремы виетаи Решение уравнений с помощью обратной теоремы виета. Докажем, что Решение уравнений с помощью обратной теоремы виета, Решение уравнений с помощью обратной теоремы виета.

По формулам корней квадратного уравнения:

Решение уравнений с помощью обратной теоремы виета, Решение уравнений с помощью обратной теоремы виета.

1. Найдём сумму корней:

Решение уравнений с помощью обратной теоремы виета.

Разберём это уравнение, как оно у нас получилось именно таким:

Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета.

Шаг 1 . Приводим дроби к общему знаменателю, получается:

Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета.

Шаг 2 . У нас получилась дробь, где нужно раскрыть скобки:

Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета. Сокращаем дробь на 2 и получаем:

Решение уравнений с помощью обратной теоремы виета.

Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.

2. Найдём произведение корней:

Решение уравнений с помощью обратной теоремы виета=

= Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета.

Докажем это уравнение:

Решение уравнений с помощью обратной теоремы виета.

Шаг 1 . Есть правило умножение дробей, по которому мы и умножаем данное уравнение:

Решение уравнений с помощью обратной теоремы виета.

Шаг 2 . Далее выполняется умножение скобку на скобку (в числителе). Можно воспользоваться формулой сокращённого умножения (ФСУ) – формула разности, откуда получается:

Решение уравнений с помощью обратной теоремы виета.

Теперь вспоминаем определение квадратного корня и считаем:

Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета.

Шаг 3 . Вспоминаем дискриминант квадратного уравнения: Решение уравнений с помощью обратной теоремы виета. Поэтому в последнюю дробь вместо D (дискриминанта) мы подставляем Решение уравнений с помощью обратной теоремы виета, тогда получается:

Решение уравнений с помощью обратной теоремы виета= Решение уравнений с помощью обратной теоремы виета.

Шаг 4 . Раскрываем скобки и приводим подобные слагаемые к дроби:

Решение уравнений с помощью обратной теоремы виета.

Шаг 5 . Сокращаем «4a» и получаем Решение уравнений с помощью обратной теоремы виета.

Вот мы и доказали соотношение для произведения корней по теореме Виета.

ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.

Видео:Обратная теорема Виета - ЛЕГКО!Скачать

Обратная теорема Виета - ЛЕГКО!

Теорема, обратная теореме Виета

По теореме, обратной теореме Виета можно проверять, правильно ли решено наше уравнение. Чтобы понять саму теорему, нужно более подробно её рассмотреть.

Если числа Решение уравнений с помощью обратной теоремы виетаи Решение уравнений с помощью обратной теоремы виетатакие:

Решение уравнений с помощью обратной теоремы виетаи Решение уравнений с помощью обратной теоремы виета, тогда они и есть корнями квадратного уравнения Решение уравнений с помощью обратной теоремы виета.

Видео:Теорема Виета за 4 минуты с примерами. Как решать квадратные уравнения быстрее учителя.Скачать

Теорема Виета за 4 минуты с примерами. Как решать квадратные уравнения быстрее учителя.

Доказательство обратной теоремы Виета

Шаг 1. Подставим в уравнение Решение уравнений с помощью обратной теоремы виетавыражения для его коэффициентов:

Решение уравнений с помощью обратной теоремы виета

Шаг 2. Преобразуем левую часть уравнения:

Решение уравнений с помощью обратной теоремы виета;

Решение уравнений с помощью обратной теоремы виета.

Шаг 3 . Найдём Корни уравнения Решение уравнений с помощью обратной теоремы виета, а для этого используем свойство о равенстве произведения нулю:

Решение уравнений с помощью обратной теоремы виетаили Решение уравнений с помощью обратной теоремы виета. Откуда и получается: Решение уравнений с помощью обратной теоремы виетаили Решение уравнений с помощью обратной теоремы виета.

Видео:ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 классСкачать

ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 класс

Примеры с решениями по теореме Виета

Найдите сумму, произведение и сумму квадратов корней квадратного уравнения Решение уравнений с помощью обратной теоремы виета, не находя корней уравнения.

Шаг 1 . Вспомним формулу дискриминанта Решение уравнений с помощью обратной теоремы виета. Подставляем наши цифры под буквы. То есть, Решение уравнений с помощью обратной теоремы виета, Решение уравнений с помощью обратной теоремы виета– это заменяет Решение уравнений с помощью обратной теоремы виета, а Решение уравнений с помощью обратной теоремы виета. Отсюда следует:

Решение уравнений с помощью обратной теоремы виета. Получается:

Решение уравнений с помощью обратной теоремы виета0″ title=»Rendered by QuickLaTeX.com» height=»13″ width=»170″ style=»vertical-align: -1px;» />. Если дискриминант больше нуля, тогда у уравнения есть корни. По теореме Виета их сумма Решение уравнений с помощью обратной теоремы виета, а произведение Решение уравнений с помощью обратной теоремы виета.

Выразим сумму квадратов корней через их сумму и произведение:

Решение уравнений с помощью обратной теоремы виета.

Решите уравнение Решение уравнений с помощью обратной теоремы виета. При этом не применяйте формулы квадратного уравнения.

У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа Решение уравнений с помощью обратной теоремы виета, сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.

Решение уравнений с помощью обратной теоремы виетаи Решение уравнений с помощью обратной теоремы виета

Задание

Найдите, если это возможно, сумму и произведение корней уравнения:

Решение уравнений с помощью обратной теоремы виета

Решение

Решение уравнений с помощью обратной теоремы виета. Так как дискриминант меньше нуля, значит у уравнения нет корней.

Ответ

Задание

Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:

Решение уравнений с помощью обратной теоремы виета

Решение

По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.

Сумма корней нового уравнения будет равна:

Решение уравнений с помощью обратной теоремы виета, а произведение Решение уравнений с помощью обратной теоремы виета.

По теореме, обратной теореме Виета, новое уравнение имеет вид:

Решение уравнений с помощью обратной теоремы виета

Ответ

Получилось уравнение, каждый корень которого в два раза больше: Решение уравнений с помощью обратной теоремы виета

Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле Решение уравнений с помощью обратной теоремы виетасвободный член Решение уравнений с помощью обратной теоремы виета– число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.

А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.

Полезные источники:

  1. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. Алгебра 8 класс: Москва “Просвещение”, 2016 – 318 с.
  2. Рубин А. Г., Чулков П. В. – учебник Алгебра 8 класс:Москва “Баласс”, 2015 – 237 с.
  3. Никольский С. М., Потопав М. К., Решетников Н. Н., Шевкин А. В. – Алгебра 8 класс: Москва “Просвещение”, 2014 – 300

Видео:Теорема Виета за 30 сек🦾Скачать

Теорема Виета за 30 сек🦾

Теорема Виета

Видео:Теорема Виета. Вебинар | МатематикаСкачать

Теорема Виета. Вебинар | Математика

Что называют теоремой?

Если человек обнаружил в математике какую-нибудь закономерность, позволяющую быстро решить ту или иную задачу, то ему не следует говорить о том, что он сделал открытие. Потому что может случиться так, что эта закономерность работает только для определённых случаев, а для других не работает или вовсе решает задачу неправильно.

Чтобы поделиться своим открытием с другими людьми, найденную закономерность следует сформулировать в виде утверждения, а затем доказать это утверждение, приводя неоспоримые факты.

Сформулированное утверждение называют теоремой. А доказательство теоремы состоит из фактов, логических рассуждений и вычислений, которые не оспариваются.

Например, теоремой можно назвать следующее утверждение:

«Если числитель и знаменатель обыкновенной дроби умнóжить на какое-нибудь число, то значение данной дроби не измéнится».

А затем привести такое доказательство:

Пусть, имеется дробь Решение уравнений с помощью обратной теоремы виета. Умнóжим числитель и знаменатель этой дроби на число с . Тогда полýчится дробь Решение уравнений с помощью обратной теоремы виета. Докáжем, что дроби Решение уравнений с помощью обратной теоремы виетаи Решение уравнений с помощью обратной теоремы виетаравны. То есть докажем, что равенство Решение уравнений с помощью обратной теоремы виетаявляется верным.

Для доказательства этого равенства воспользуемся основным свойством пропорции:

Решение уравнений с помощью обратной теоремы виета

От перестановки мест сомножителей произведение не меняется. Поэтому в получившемся равенстве можно упорядочить правую часть по алфавиту:

Решение уравнений с помощью обратной теоремы виета

Поскольку равенство Решение уравнений с помощью обратной теоремы виетаявляется пропорцией, а пропорция это равенство двух отношений, то дроби Решение уравнений с помощью обратной теоремы виетаи Решение уравнений с помощью обратной теоремы виетаравны. Теорема доказана.

Видео:Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)Скачать

Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)

Теорема Виета

Французский математик Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:

Сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.

То есть, если имеется приведённое квадратное уравнение x 2 + bx + c = 0 , а его корнями являются числа x1 и x2 , то справедливы следующие два равенства:

Решение уравнений с помощью обратной теоремы виета

Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.

Покажем теорему Виета на примере приведённого квадратного уравнения x 2 + 4x + 3 = 0 .

Мы пока не знаем какие корни имеет уравнение x 2 + 4x + 3 = 0 . Но по теореме Виета можно записать, что сумма этих корней равна второму коэффициенту 4 , взятому с противоположным знáком. Если коэффициент 4 взять с противоположным знáком, то получим −4 . Тогда:

Решение уравнений с помощью обратной теоремы виета

А произведение корней по теореме Виета будет равно свободному члену. В уравнении x 2 + 4x + 3 = 0 свободным членом является 3 . Тогда:

Решение уравнений с помощью обратной теоремы виета

Теперь проверим действительно ли сумма корней равна −4 , и равно ли произведение 3 . Для этого найдём корни уравнения x 2 + 4x + 3 = 0 . А для удобства воспользуемся формулами для чётного второго коэффициента:

Решение уравнений с помощью обратной теоремы виета

Корнями уравнения являются числа −1 и −3 . По теореме Виета их сумма должна была равняться второму коэффициенту уравнения x 2 + 4x + 3 = 0 , взятому с противоположным знаком. Действительно, так оно и есть. Вторым коэффициентов в уравнении x 2 + 4x + 3 = 0 является 4 . Если взять его с противоположным знаком и приравнять сумму корней x1 + x2 к этому коэффициенту, то получается верное равенство:

Решение уравнений с помощью обратной теоремы виета

А произведение корней −1 и −3 по теореме Виета должно было равняться свободному члену уравнения x 2 + 4x + 3 = 0 , то есть числу 3 . Видим, что это условие тоже выполняется:

Решение уравнений с помощью обратной теоремы виета

Значит выражение Решение уравнений с помощью обратной теоремы виетаявляется справедливым.

Рассмотрим квадратное уравнение x 2 − 8x + 15 = 0 . По теореме Виета сумма корней этого уравнения равна второму коэффициенту, взятому с противоположным знаком. Второй коэффициент равен −8 . Если взять его с противоположным знаком, то получим 8 . Тогда:

Решение уравнений с помощью обратной теоремы виета

А произведение корней равно свободному члену. В уравнении x 2 − 8x + 15 = 0 свободным членом является 15 . Тогда:

Решение уравнений с помощью обратной теоремы виета

Теперь проверим действительно ли сумма корней равна 8 , и равно ли произведение 15 . Для этого найдём корни данного уравнения. А для удобства воспользуемся формулами для чётного второго коэффициента. В этот раз пропустим нéкоторые подробные записи:

Решение уравнений с помощью обратной теоремы виета

Видим, что корнями уравнения x 2 − 8x + 15 = 0 являются числа 5 и 3 . Их сумма равна 8 . То есть сумма корней равна второму коэффициенту уравнения x 2 − 8x + 15 = 0 , взятому с противоположным знаком.

А произведение чисел 5 и 3 равно 15 . То есть равно свободному члену уравнения x 2 − 8x + 15 = 0 .

Значит выражение Решение уравнений с помощью обратной теоремы виетаявляется справедливым.

Замечание. Чтобы теорема Виета выполнялась, квадратное уравнение обязательно должно быть приведённым и иметь корни.

Например, рассмотрим квадратное уравнение x 2 − 2x + 4 = 0 . Напишем сумму и произведение корней этого уравнения:

Решение уравнений с помощью обратной теоремы виета

Но уравнение x 2 − 2x + 4 = 0 не имеет корней, сумма которых равна 2, а произведение которых равно 4 . Убедиться в этом можно, вычислив дискриминант:

А значит записывать выражение Решение уравнений с помощью обратной теоремы виетане имеет смысла.

Теорема Виета полезна тем, что позволяет до начала решения узнать знаки корней уравнения.

Например, запишем для уравнения x 2 − 5x + 6 = 0 сумму и произведение его корней. Сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Решение уравнений с помощью обратной теоремы виета

Посмотрев на эти два равенства можно сразу понять, что оба корня должны быть положительными. Потому что произведение x1 × x2 = 6 будет выполняться только в двух случаях: если значения x1 и x2 положительны либо они оба отрицательны. Если эти значения будут отрицательными, то не будет выполняться равенство x1 + x2 = 5 , поскольку его правая часть равна положительному числу. А значения x1 и x2 должны удовлетворять как равенству x1 + x2 = 5 , так и равенству x1 × x2 = 6.

Ещё одна польза от теоремы Виета в том, что корни можно найти методом подбора. В данном примере корни должны быть такими, чтобы они удовлетворяли как равенству x1 + x2 = 5 так и равенству x1 × x2 = 6 . Очевидно, что таковыми являются корни 3 и 2

Решение уравнений с помощью обратной теоремы виета

Решение уравнений с помощью обратной теоремы виета

Доказательство теоремы Виета

Пусть дано приведённое квадратное уравнение x 2 + bx + c = 0 . Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Решение уравнений с помощью обратной теоремы виета

Вспомним формулы корней квадратного уравнения:

Решение уравнений с помощью обратной теоремы виета

Найдём сумму корней x1 и x2 . Для этого подставим в выражение x1 + x2 вместо x1 и x2 соответствующие выражения из правой части формул корней квадратного уравнения. Не забываем, что в приведённом квадратном уравнении x 2 + bx + c = 0 старший коэффициент a равен единице. Тогда в процессе подстановки знаменатель станет равен просто 2

Решение уравнений с помощью обратной теоремы виета

Запишем правую часть в виде дроби с одним знаменателем:

Решение уравнений с помощью обратной теоремы виета

Раскроем скобки в числителе и приведём подобные члены:

Решение уравнений с помощью обратной теоремы виета

Сократим дробь Решение уравнений с помощью обратной теоремы виетана 2 , тогда получим −b

Решение уравнений с помощью обратной теоремы виета

Теперь аналогично докажем, что произведение x1 × x2 равно свободному члену c .

Подставим вместо x1 и x2 соответствующие выражения из формул корней квадратного уравнения. Не забываем, что коэффициент a всё ещё равен единице:

Решение уравнений с помощью обратной теоремы виета

Чтобы перемнóжить дроби, нужно перемнóжить их числители и знаменатели:

Решение уравнений с помощью обратной теоремы виета

В числителе теперь содержится произведение суммы двух выражений и разности этих же выражений. Воспользуемся тождеством (a + b)(a − b) = a 2 − b 2 . Тогда в числителе полýчится Решение уравнений с помощью обратной теоремы виетаА знаменатель будет равен 4

Решение уравнений с помощью обратной теоремы виета

Теперь в числителе выражение (−b) 2 станет равно b 2 , а выражение Решение уравнений с помощью обратной теоремы виетастанет равно просто D

Решение уравнений с помощью обратной теоремы виета

Но D равно b 2 − 4ac . Подстáвим это выражение вместо D , не забывая что a = 1 . То есть вместо b 2 − 4ac надо подставить b 2 − 4c

Решение уравнений с помощью обратной теоремы виета

В получившемся выражении раскроем скобки в числителе и приведём подобные члены:

Решение уравнений с помощью обратной теоремы виета

Сократим получившуюся дробь на 4

Решение уравнений с помощью обратной теоремы виета

Таким образом, сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком ( x1 + x2 = −b ), а произведение корней равно свободному члену ( x1 × x2 = c ). Теорема доказана.

Видео:Теорема Виета для многочлена 3 порядка. 10 класс.Скачать

Теорема Виета для многочлена 3 порядка. 10 класс.

Теорема, обратная теореме Виета

Когда записана сумма и произведение корней приведённого квадратного уравнения, обычно начинается подбор подходящих корней к этому уравнению. В этот момент в работу включается так называемая теорема, обратная теореме Виета. Она формулируется так:

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел x1 и x2 равно свободному члену уравнения x 2 + bx + c = 0, то числа x1 и x2 являются корнями уравнения x 2 + bx + c = 0.

Обратные теоремы бывают поставлены так, что их утверждением является заключение первой теоремы.

Так, доказывая теорему Виета мы пришли к заключению, что сумма x1 и x2 равна −b , а произведение x1 и x2 равно c . В обратной же теореме это заключение служит утверждением.

Ранее мы решили уравнение x 2 − 5x + 6 = 0 и написали для него такую сумму и произведение корней:

Решение уравнений с помощью обратной теоремы виета

А затем подобрали корни 3 и 2 . По сути мы применили теорему, обратную теореме Виета. Числа 3 и 2 таковы, что их сумма равна второму коэффициенту уравнения x 2 − 5x + 6 = 0 , взятому с противоположным знаком (числу 5 ), а произведение чисел 3 и 2 равно свободному члену (числу 6 ). Значит числа 3 и 2 являются корнями уравнения x 2 − 5x + 6 = 0 .

Пример 2. Решить квадратное уравнение x 2 − 6x + 8 = 0 по теореме, обратной теореме Виета.

В данном уравнении a = 1 . Значит квадратное уравнение является приведённым. Его можно решить по теореме, обратной теореме Виета.

Сначала запишем сумму и произведение корней уравнения. Сумма корней будет равна 6 , поскольку второй коэффициент исходного уравнения равен −6 . А произведение корней будет равно 8

Решение уравнений с помощью обратной теоремы виета

Теперь имея эти два равенства можно подобрать подходящие корни. Они должны удовлетворять как равенству x1 + x2 = 6 , так и равенству x1 × x2 = 8

Подбор корней удобнее выполнять с помощью их произведения. Используя равенство x1 × x2 = 8 нужно найти такие x1 и x2 , произведение которых равно 8.

Число 8 можно получить если перемножить числа 4 и 2 либо 1 и 8.

4 × 2 = 8
1 × 8 = 8

Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли не только равенству x1 × x2 = 8 , но и равенству x1 + x2 = 6 .

Сразу делаем вывод, что значения 1 и 8 не годятся, поскольку они хоть и удовлетворяют равенству x1 × x2 = 8 , но не удовлетворяют равенству x1 + x2 = 6 .

Зато значения 4 и 2 подходят как равенству x1 × x2 = 8 , так и равенству x1 + x2 = 6 , поскольку эти значения удовлетворяют обоим равенствам:

Решение уравнений с помощью обратной теоремы виета

Значит корнями уравнения x 2 − 6x + 8 = 0 являются числа 4 и 2 .

Решение уравнений с помощью обратной теоремы виета

Обратная теорема, как и любая теорема нуждается в доказательстве. Докажем теорему, обратную теореме Виета. Для удобства корни x1 и x2 обозначим как m и n . Тогда утверждение теоремы, обратной теореме Виета примет следующий вид:

Если числа m и n таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел m и n равно свободному члену уравнения x 2 + bx + c = 0, то числа m и n являются корнями уравнения x 2 + bx + c = 0

Для начала запишем, что сумма m и n равна −b , а произведение mn равно c

Решение уравнений с помощью обратной теоремы виета

Чтобы доказать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 , нужно поочередно подстáвить буквы m и n в это уравнение вместо x , затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 .

Помимо букв m и n нам нужно знать чему равен параметр b . Выразим его из равенства m + n = −b . Легче всего это сделать, умножив обе части этого равенства на −1

Решение уравнений с помощью обратной теоремы виета

Теперь всё готово для подстановок. Подстáвим m в уравнение x 2 + bx + c = 0 вместо x , а выражение −m − n подставим вместо b

Решение уравнений с помощью обратной теоремы виета

Видим, что при x = m получается верное равенство. Значит число m является корнем уравнения x 2 + bx + c = 0 .

Аналогично докажем, что число n является корнем уравнения x 2 + bx + c = 0 . Подставим вместо x букву n , а вместо c подставим mn , поскольку c = mn .

Решение уравнений с помощью обратной теоремы виета

Видим, что при x = n тоже получается верное равенство. Значит число n является корнем уравнения.

Следовательно, числа m и n являются корнями уравнения x 2 + bx + c = 0 .

Видео:Теорема ВиетаСкачать

Теорема Виета

Примеры решения уравнений по теореме, обратной теореме Виета

Пример 1. Решить квадратное уравнение x 2 − 4x + 4 = 0 по теореме, обратной теореме Виета.

Запишем сумму корней x1 и x2 и приравняем её к второму коэффициенту, взятому с противоположным знаком. Также запишем произведение корней x1 и x2 и приравняем его к свободному члену :

Решение уравнений с помощью обратной теоремы виета

В данном примере очевидно, что корнями являются числа 2 и 2 . Потому что их сумма равна 4 и произведение равно 4

Решение уравнений с помощью обратной теоремы виета

Значение x1 совпадает с x2 . Это тот случай, когда квадратное уравнение имеет только один корень. Если мы попробуем решить данное уравнение с помощью формул корней квадратного уравнения, то обнаружим что дискриминант равен нулю, и корень вычисляется по формуле Решение уравнений с помощью обратной теоремы виета

Решение уравнений с помощью обратной теоремы виета

Данный пример показывает, что теорема обратная теореме Виета, работает и для уравнений, имеющих только один корень. Признаком того, что квадратное уравнение имеет только один корень является то, что значения x1 и x2 совпадают.

Пример 2. Решить уравнение x 2 + 3x + 2 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Решение уравнений с помощью обратной теоремы виета

Теперь подберём значения x1 и x2 . Здесь начинается самое интересное. Произведение корней равно 2 . Число 2 можно получить перемножив 1 и 2 . Но сумма корней x1 + x2 равна отрицательному числу −3 . Значит значения 1 и 2 не подходят.

Сумма бывает отрицательной если оба слагаемых отрицательны либо отрицательным является одно слагаемое, модуль которого больше.

Если подберём корни с разными знаками, то не будет выполняться равенство x1 × x2 = 2 .

Если подберем положительные корни, то будет выполняться равенство x1 × x2 = 2 , но не будет выполняться равенство x1 + x2 = −3 .

Очевидно, что корнями являются два отрицательных числа. Произведение отрицательных чисел есть положительное число. А сумма отрицательных чисел есть отрицательное число.

Тогда равенствам будут удовлетворять числа −1 и −2 .

Решение уравнений с помощью обратной теоремы виета

Итак, корнями являются числа −1 и −2

Решение уравнений с помощью обратной теоремы виета

Пример 3. Решить уравнение x 2 + 16x + 15 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Решение уравнений с помощью обратной теоремы виета

Как и в прошлом примере сумма корней равна отрицательному числу, а произведение корней — положительному числу.

Произведение бывает положительным если оба сомножителя положительны либо оба сомножителя отрицательны. Первый вариант отпадает сразу, поскольку сумма корней равна отрицательному числу. Тогда получается, что оба корня будут отрицательными. Попробуем подобрать их.

Число 15 можно получить, если перемножить числа −1 и −15 или (−3) и (−5) . В данном случае подходит первый вариант, поскольку сумма чисел −1 и −15 равна −16 , а их произведение равно 15 . Значит корнями уравнения x 2 + 16x + 15 = 0 являются числа −1 и −15

Решение уравнений с помощью обратной теоремы виета

Пример 4. Решить уравнение x 2 − 10x − 39 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Решение уравнений с помощью обратной теоремы виета

Произведение корней равно отрицательному числу. Значит один из корней является отрицательным. Число −39 можно получить если перемножить числа −3 и 13 либо −13 и 3 . Из этих комбинаций больше годится комбинация −3 и 13 , поскольку при перемножении этих чисел получается −39 , а при сложении 10

Решение уравнений с помощью обратной теоремы виета

Значит корнями уравнения x 2 − 10x − 39 = 0 являются числа −3 и 13

Решение уравнений с помощью обратной теоремы виета

Пример 5. Первый корень уравнения x 2 + bx + 45 = 0 равен 15 . Найти второй корень этого уравнения, а также значение коэффициента b .

По теореме Виета произведение корней приведённого квадратного уравнения равно свободному члену. В данном случае это произведение равно 45

При этом один из корней уже известен — это корень 15 .

Тогда второй корень будет равен 3 , потому что число 45 получается, если 15 умножить на 3

Этот второй корень также можно было бы получить, выразив из равенства 15 × x2 = 45 переменную x2

Решение уравнений с помощью обратной теоремы виета

Теперь определим значение коэффициента b . Для этого напишем сумму корней уравнения:

По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней равна 18, а 18 это положительное число, то в самóм уравнении этот коэффициент будет отрицательным:

Обычно решение к такой задаче записывают так. Сначала записывают основную теорему Виета в виде суммы и произведения корней:

Решение уравнений с помощью обратной теоремы виета

Затем в это выражение подставляют имеющиеся известные значения. В нашем случае известно, что первый корень равен 15 , а свободный член уравнения x 2 + bx + 45 = 0 равен 45

Решение уравнений с помощью обратной теоремы виета

Из этой системы следует найти x2 и b . Выразим эти параметры:

Решение уравнений с помощью обратной теоремы виета

Из этой системы мы видим, что x2 равно 3. Подставим его в первое равенство:

Решение уравнений с помощью обратной теоремы виета

Теперь из первого равенства мы видим, что −b равно 18

Решение уравнений с помощью обратной теоремы виета

Но нас интересует b , а не −b . Следует помнить, что −b это −1b . Чтобы найти b нужно 18 разделить на −1 . Тогда b станет равно −18

Решение уравнений с помощью обратной теоремы виета

Этот же результат можно получить если в выражении Решение уравнений с помощью обратной теоремы виетаумножить первое равенство на −1

Решение уравнений с помощью обратной теоремы виета

Теперь возвращаемся к исходному уравнению x 2 + bx + 45 = 0 и подставляем найденное значение b

Решение уравнений с помощью обратной теоремы виета

Выполним умножение −18 на x . Получим −18x

Решение уравнений с помощью обратной теоремы виета

Решение уравнений с помощью обратной теоремы виета

Пример 6. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа 2 и 8 .

В этом задании корни уже известны. То есть x1 = 2 , x2 = 8 . По ним надо составить квадратное уравнение вида x 2 + bx + c = 0 .

Запишем сумму и произведение корней:

Решение уравнений с помощью обратной теоремы виета

По теореме Виета сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней 2 и 8 равна 10 , то в самóм уравнении число 10 должно быть с противоположным знаком. Значит b = −10 .

Произведение корней по теореме Виета равно свободному члену. У нас это произведение равно 16 .

Значит b = −10 , c = 16 . Отсюда:

Пример 7. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа Решение уравнений с помощью обратной теоремы виетаи Решение уравнений с помощью обратной теоремы виета.

Запишем сумму и произведение корней:

Решение уравнений с помощью обратной теоремы виета

Сумма корней равна 2. Тогда в уравнении второй коэффициент будет равен −2. А произведение корней равно −1. Значит свободный член будет равен −1. Тогда:

Видео:Теорема Виета ПРЯМАЯ и ОБРАТНАЯ, в чем разница? - ЗА 4 МИНУТЫСкачать

Теорема Виета ПРЯМАЯ и ОБРАТНАЯ, в чем разница?  - ЗА 4 МИНУТЫ

Когда квадратное уравнение неприведённое

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым.

Если квадратное уравнение не является приведённым, но всё равно возникла необходимость применить теорему Виета, то обе части неприведённого квадратного уравнения следует разделить на коэффициент, который располагается перед x 2 .

Если к примеру в квадратном уравнении a x 2 + bx + c = 0 коэффициент a не равен единице, то данное уравнение является неприведённым. Чтобы сделать его приведённым, надо разделить обе его части на коэффициент, который располагается перед x 2 , то есть на a

Решение уравнений с помощью обратной теоремы виета

Получилось уравнение Решение уравнений с помощью обратной теоремы виета, которое является приведённым. В нём второй коэффициент равен Решение уравнений с помощью обратной теоремы виета, а свободный член равен Решение уравнений с помощью обратной теоремы виета. Тогда сумма и произведение корней будут выглядеть так:

Решение уравнений с помощью обратной теоремы виета

Например, решим квадратное уравнение 4x 2 + 5x + 1 = 0 . Это уравнение не является приведённым. Приведённым оно станет, если разделить обе его части на коэффициент, который располагается перед x 2 , то есть на 4

Решение уравнений с помощью обратной теоремы виета

Получили приведённое квадратное уравнение. В нём второй коэффициент равен Решение уравнений с помощью обратной теоремы виета, а свободный член Решение уравнений с помощью обратной теоремы виета. Тогда по теореме Виета имеем:

Решение уравнений с помощью обратной теоремы виета

Отсюда методом подбора находим корни −1 и

Решение уравнений с помощью обратной теоремы виета

Возможно этот метод вы редко будете использовать при решении квадратных уравнений. Но знать о нём не помешает.

Пример 2. Решить квадратное уравнение 3x 2 − 7x + 2 = 0

Данное уравнение не является приведённым, а значит его пока нельзя решить по теореме, обратной теореме Виета.

Сделаем данное уравнение приведенным. Разделим обе части на коэффициент, который располагается перед x 2

Решение уравнений с помощью обратной теоремы виета

Получили уравнение Решение уравнений с помощью обратной теоремы виета. Запишем сумму и произведение корней этого уравнения:

Решение уравнений с помощью обратной теоремы виета

Отсюда методом подбора находим корни 2 и Решение уравнений с помощью обратной теоремы виета

Решение уравнений с помощью обратной теоремы виета

Пример 3. Решить квадратное уравнение 2x 2 − 3x − 2 = 0

Это неприведённое квадратное уравнение. Чтобы сделать его приведённым, нужно разделить обе его части на 2 . Сделать это можно в уме. Если 2x 2 разделить на 2 , то полýчится x 2

Решение уравнений с помощью обратной теоремы виета

Далее если −3x разделить на 2 , то полýчится Решение уравнений с помощью обратной теоремы виета. Чтобы видеть где коэффициент, а где переменная, такое выражение записывают в виде Решение уравнений с помощью обратной теоремы виета

Решение уравнений с помощью обратной теоремы виета

Далее если −2 разделить на 2 , то полýчится −1

Решение уравнений с помощью обратной теоремы виета

Прирáвниваем получившееся выражение к нулю:

Решение уравнений с помощью обратной теоремы виета

Теперь применяем теорему Виета. Сумма корней будет равна второму коэффициенту, взятому с противоположным знáком, а произведение корней свободному члену:

Решение уравнений с помощью обратной теоремы виета

Отсюда методом подбора находим корни 2 и Решение уравнений с помощью обратной теоремы виета

Видео:Теорема Виета. Практическая часть. 1ч. 8 класс.Скачать

Теорема Виета. Практическая часть. 1ч. 8 класс.

Теорема Виета для квадратного уравнения

Решение уравнений с помощью обратной теоремы виета

О чем эта статья:

Видео:Алгебра 8. Урок 10 - Теорема Виета и её применение в задачахСкачать

Алгебра 8. Урок 10 - Теорема Виета и её применение в задачах

Основные понятия

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Существует три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:

  • если D 0, есть два различных корня.

В случае, когда второй коэффициент четный, можно воспользоваться формулой нахождения дискриминанта , где .

В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.

Видео:Математика 8 класс Урок 45 Обратная теорема ВиетаСкачать

Математика  8 класс  Урок 45  Обратная теорема Виета

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Рассмотрим квадратное уравнение, в котором первый коэффициент равен 1: . Такие уравнения называют приведенными квадратными уравнениями. Сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
Решение уравнений с помощью обратной теоремы виета

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Обучение на курсах по математике помогает быстрее разобраться в новых темах и подтянуть оценки в школе.

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Доказательство теоремы Виета

Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:

Докажем, что следующие равенства верны

  • x₁ + x₂ = −b,
  • x₁ * x₂ = c.

Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x 2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.

    Объединим числитель и знаменатель в правой части.

Раскроем скобки и приведем подобные члены:

Сократим дробь полученную дробь на 2, остается −b:

Мы доказали: x₁ + x₂ = −b.

Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.

    Подставим вместо x₁ и x₂ соответствующие части из формул корней квадратного уравнения:

Перемножаем числители и знаменатели между собой:

Очевидно, в числителе содержится произведение суммы и разности двух выражений. Поэтому воспользуемся тождеством (a + b) * (a − b) = a 2 − b 2 . Получаем:

Далее произведем трансформации в числителе:

Нам известно, что D = b2 − 4ac. Подставим это выражение вместо D.

Далее раскроем скобки и приведем подобные члены:

Сократим:

Мы доказали: x₁ * x₂ = c.

Значит сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Обратная теорема Виета

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:

Обратная теорема Виета

Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x 2 + bx + c = 0.

Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.

Видео:Теорема, обратная к теореме Виета для решения приведённого (и не только) квадратного уравнения.Скачать

Теорема, обратная к теореме Виета для решения приведённого (и не только) квадратного уравнения.

Докажем теорему, обратную теореме Виета

Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x 2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x 2 + bx + c = 0.

Зафиксируем, что сумма m и n равна −b, а произведение равно c.

Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x 2 + bx + c = 0.

    Выразим b из равенства m + n = −b. Это можно сделать, умножив обе части на −1:

Подставим m в уравнение вместо x, выражение −m − n подставим вместо b, а выражение mn — вместо c:

При x = m получается верное равенство. Значит число m является искомым корнем.

  1. Аналогично докажем, что число n является корнем уравнения. Подставим вместо x букву n, а вместо c подставим m * n, поскольку c = m * n.

    При x = n получается верное равенство. Значит число n является искомым корнем.

Мы доказали: числа m и n являются корнями уравнения x 2 + bx + c = 0.

Видео:Теорема Виета. Алгебра, 8 классСкачать

Теорема Виета. Алгебра, 8 класс

Примеры

Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.

Дано: x 2 − 6x + 8 = 0.

Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=»59″ src=»https://lh6.googleusercontent.com/tFokx3SM93Hwlr7ZM9BqX1xiHKv_2dUIB9MoNa8RAwSTmQKXdCcqcFXxTZmxNGw7bOVek-RzRXqBkoCqnYMiqIYVwKhfnHeU-7mA03feEqJTlyKB7e-OsTTKgPaOlddfiaTGszcv» width=»99″>

Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.

Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:

Значит числа 4 и 2 являются корнями уравнения x 2 − 6x + 8 = 0.
2 − 6x + 8 = 0″ height=»57″ src=»https://lh3.googleusercontent.com/rohB7Bvd-elMhTxEUuOhKqLJjqLAvo9VlJxZvOnMeDAHARfKT-SYOWb1WXTTWEN2h0oKbLl6wH7lc0IWL_vH3Si2AJGAGXVn8TPFDT_J1Wu2WeoQ-WP1qgXjCnZ99tWUkK2BOvF2″ width=»64″>

Видео:Решение уравнений с помощью теоремы, обратной теореме Виета.Скачать

Решение уравнений с помощью теоремы, обратной теореме Виета.

Неприведенное квадратное уравнение

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:

ax 2 + bx + c = 0, где а = 1.

Если квадратное уравнение не является приведенным, но задание связано с применением теоремы, нужно обе части разделить на коэффициент, который располагается перед x 2 .

  1. Получилось следующее приведенное уравнение:

    Получается, второй коэффициент при x равен, свободный член —. Значит сумма и произведение корней будут иметь вид:

Рассмотрим пример неприведенного уравнения: 4x 2 + 5x + 1 = 0. Разделим обе его части на коэффициент перед x 2 , то есть на 4.

  • Получилось приведённое квадратное уравнение. Второй коэффициент которого равен, а свободный член.
  • Тогда в соответствии с теоремой Виета получаем:

  • Метод подбора помогает найти корни: −1 и
  • 🔍 Видео

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика
    Поделиться или сохранить к себе: