В этой статье мы всесторонне разберем метод введения новой переменной. Здесь мы выясним, для решения каких уравнений этот метод предназначен, проникнем в его суть, приведем обоснование метода, доказав соответствующее утверждение, запишем алгоритм решения уравнений методом введения новой переменной и рассмотрим решения характерных примеров.
- Когда применяется и в чем суть метода
- Обоснование
- Алгоритм решения уравнений методом введения новой переменной
- Решение примеров
- Уравнения с одной переменной
- Определение уравнения. Корни уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Равносильность уравнений
- Линейные уравнения
- Пример 1.
- Пример 2.
- Квадратные уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Рациональные уравнения
- Пример:
- Решение уравнения р(х) = 0 методом разложения его левой части на множители
- Пример 1.
- Пример 2.
- Решение уравнений методом введения новой переменной
- Пример 1.
- Пример 2.
- Биквадратные уравнения
- Пример:
- Решение задач с помощью составления уравнений
- Иррациональные уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Показательные уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Логарифмические уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Примеры решения показательно-логарифмических уравнений
- Пример 1.
- Пример 2.
- Пример 3.
- 4. Метод введения новой переменной
- Теория:
- 💥 Видео
Видео:§101 Метод введения новой переменнойСкачать

Когда применяется и в чем суть метода
Метод введения новой переменной предназначен для решения уравнений, имеющих вид f(g(x))=0 или f1(g(x))=f2(g(x)) , где f , f1 и f2 – некоторые функции, а x – неизвестная переменная. Для лучшего восприятия приведем примеры таких уравнений:
- (x 2 ) 3 −3·x 2 +2=0 , это уравнение имеет вид f(g(x))=0 , здесь g(x)=x 2 , а функция f такая, что f(t)=t 2 −3·t+2 ;
, это уравнение вида f1(g(x))=f2(g(x)) , здесь в качестве g(x) можно рассматривать x 2 +2·x , тогда функции f1 и f2 таковы, что
и
;
, это уравнение, имеющее вид f(g(x))=0 , где
, а функция f описывается как
.
Понятно, что f(g(x))=0 и f1(g(x))=f2(g(x)) — равносильные уравнения, так как уравнение f1(g(x))=f2(g(x)) приводится к виду f(g(x))=0 при помощи равносильного преобразования, заключающегося в переносе выражения f2(g(x)) из правой части в левую с противоположным знаком. Поэтому дальнейшую теорию мы будем излагать только для уравнений вида f(g(x))=0 , это сделано в угоду краткости без ущерба для общности.
Суть метода введения новой переменной для решения уравнения f(g(x))=0 состоит во введении новой переменной t как g(x)=t с целью нахождения всех корней исходного уравнения через множество решений T уравнения f(t)=0 с новой переменной t и использование равенства g(x)=t . Забегая немного вперед, скажем, что корнями исходного уравнения являются все такие значения x , которые удовлетворяют условию g(x)∈T . В частности,
- если T – пустое множество, то есть, уравнение f(t)=0 не имеет решений, то условие g(x)∈T определяет пустое множество, а это означает, что исходное уравнение не имеет решений;
- если T – конечное множество, то есть, уравнение f(t)=0 имеет n решений t1, t2, …, tn , то условие g(x)∈T есть не что иное, как совокупность уравнений g(x)=t1, g(x)=t2, …, g(x)=tn , а это означает, что решением исходного уравнения является решение совокупности уравнений g(x)=t1, g(x)=t2, …, g(x)=tn .
Поясним на примере. Возьмем уже упомянутое выше уравнение (x 2 ) 3 −3·x 2 +2=0 . Введение новой переменной x 2 =t позволяет от исходного уравнения перейти к кубическому уравнению t 3 −3·t+2=0 с новой переменной (заменяем в исходном уравнении x 2 на t ). Множество решений этого уравнения T (оно в нашем случае состоит из двух чисел t1=1 и t2=−2 , то есть, T= ) и использование равенства x 2 =t дают возможность определить все корни исходного уравнения. Они определяются по условию x 2 ∈ , которое есть не что иное, как совокупность двух уравнений x 2 =−2 , x 2 =1 .
В основе метода введения новой переменной лежит следующее утверждение:
Решение уравнения f(g(x))=0 есть множество значений переменной x , удовлетворяющих условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 .
Приведем обоснование озвученного утверждения в следующем пункте.
Видео:Решение биквадратных уравнений. 8 класс.Скачать

Обоснование
Докажем утверждение, лежащее в основе метода введения новой переменной, которое мы привели в предыдущем пункте. Для этого нужно доказать два момента:
- что любой корень уравнения f(g(x))=0 удовлетворяет условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 ,
- что любое значение переменной x , удовлетворяющее условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 , является корнем уравнения f(g(x))=0 .
Начнем с первой части. Пусть x0 – корень уравнения f(g(x))=0 . Докажем, что x0 удовлетворяет условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 .
Так как x0 – корень уравнения f(g(x))=0 , то f(g(x0))=0 – верное числовое равенство. Из этого равенства следует, что g(x0) – корень уравнения f(t)=0 . А из этого следует, что g(x0) принадлежит множеству всех корней уравнения f(t)=0 .
Первая часть доказана. Переходим к доказательству второй части утверждения.
Пусть x0 удовлетворяет условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 . Докажем, что x0 является корнем уравнения f(g(x))=0 .
Так как x0 удовлетворяет условию g(x)∈T , то g(x0)∈T , то есть, g(x0) – это один из корней уравнения f(t)=0 . Значит, f(g(x0))=0 – верное числовое равенство. А из этого равенства следует, что x0 – корень уравнения f(g(x))=0 .
Так доказана вторая часть утверждения и все утверждение в целом.
Видео:Решение уравнения методом замены переменнойСкачать

Алгоритм решения уравнений методом введения новой переменной
Приведенная выше информация позволяет записать алгоритм решения уравнения f(g(x))=0 методом введения новой переменной:
- Вводится новая переменная t как g(x)=t , и осуществляется переход от исходного уравнения f(g(x))=0 со старой переменной x к уравнению f(t)=0 с новой переменной t .
- Решается полученное уравнение с новой переменной. При этом
- если оно не имеет корней, то делается вывод об отсутствии корней у исходного уравнения,
- если уравнение имеет корни, то выполняются следующие шаги алгоритма.
- Осуществляется возврат к старой переменной. Для этого
- если решенное на предыдущем шаге уравнение имеет единственный корень, обозначим его t1 , то составляется уравнение g(x)=t1 ,
- если решенное на предыдущем шаге уравнение имеет два, три или любое другое, но конечное число корней, обозначим их t1, t2, …, tn , то составляется совокупность уравнений g(x)=t1, g(x)=t2, …, g(x)=tn ,
- если же решенное на предыдущем шаге уравнение имеет бесконечно много корней, и они составляют числовое множество T , то составляется совокупность уравнений, неравенств и двойных неравенств, отвечающая выражению g(x)∈T (например, если решением уравнения с новой переменной t является числовое множество (−∞, t1)∪<t2>∪[t3, t4) , что то же самое
, то соответствующая совокупность будет иметь вид
).
- Наконец, решается составленное уравнение или совокупность – ее решение есть искомое решение исходного уравнения.
Видео:Решение уравнений методом введения новой переменнойСкачать

Решение примеров
Обычно первое знакомство с методом введения новой переменной происходит в школе в рамках темы «решение рациональных уравнений». В частности, рациональными являются биквадратные уравнения, стандартным методом решения которых как раз является метод введения новой переменной. Для примера приведем краткое решение методом введения новой переменной биквадратного уравнения x 4 −3·x 2 +5=0 . После представления его в виде (x 2 ) 2 −3·x 2 +5=0 , вводим новую переменную x 2 =t , это позволяет перейти к квадратному уравнению с новой переменной: t 2 −3·t+5=0 . Оно не имеет действительных корней, так как его дискриминант D=(−3) 2 −4·1·5=−11 – отрицательный, откуда заключаем, что исходное уравнение не имеет корней.
Среди рациональных уравнений масса и других типичных представителей, решающихся методом введения новой переменной. Такими, во-первых, являются уравнения, в которых переменная фигурирует только в одинаковых квадратных двучленах, например (x 2 −5·x+4)·(x 2 −5·x+6)=120 , (x 2 +5) 2 −11·(x 2 +5)+28=0 , 



Продвигаясь дальше в школьном курсе математики по пути знакомства с уравнениями, нам встречаются иррациональные, тригонометрические, показательные, логарифмические и другие уравнения, и каждый раз мы возвращаемся к методу введения новой переменной для их решения. Для уравнений каждого вида есть свои особенности в плане введения новой переменной. Рекомендуем ознакомиться с ними в следующих материалах:
- решение иррациональных уравнений методом введения новой переменной,
- метод введения новой переменной при решении показательных уравнений,
- решение показательных уравнений методом введения новой переменной,
- решение тригонометрических уравнений методом введения новой переменной.
В заключение покажем пример решения уравнения, которое после введения новой переменной имеет бесконечное множество решений. Подобные случаи встречаются крайне редко, и тем они еще более интересны. В них главное разобраться с особенностями возврата к старой переменной.
Решите уравнение
Видео:Алгебра 9 класс. Решение систем уравнений методом замены переменныхСкачать

Уравнения с одной переменной
Уравнением с одной переменной — это равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.
Содержание:
Определение уравнения. Корни уравнения
Равенство с переменной f(x) = g (х) называют уравнением с одной переменной х, если поставлена задача найти все те же значения х, при которых равенство с переменной обращается в верное числовое равенство. Всякое значение переменной, при котором выражения /(х) и g(x) принимают равные числовые значения, называют корнем уравнения.
Решить уравнение — это значит найти все его корни или доказать, что их нет.
Пример 1.
Уравнение 3 + х = 7 имеет единственный корень 4, так как при этом и только при этом значении переменной равенство 3 + х = 7 является верным.
Пример 2.
Уравнение (х — 1)(х — 2) = 0 имеет два корня: 1 и 2.
Пример 3.
Уравнение 
Заметим, что можно говорить и о мнимых корнях уравнений. Так, уравнение 

Равносильность уравнений
Уравнения, имеющие одни и те же корни, называют равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.
Например, уравнения х + 2 = 5 и х + 5 = 8 равносильны, так как каждое из них имеет единственный корень — число 3. Равносильны и уравнения 
Уравнения 
В процессе решения уравнения его стараются заменить более простым, но равносильным данному. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.
Теорема 1.
Если в уравнении какое-нибудь слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.
Например, уравнение 
Теорема 2.
Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
Например, уравнение 

Линейные уравнения
Линейным уравнением с одной переменной х называют уравнение вида
где 


Для линейного уравнения 
1) 

2) 

3) 

Многие уравнения в результате преобразований сводятся к линейным.
Пример 1.
Решить уравнение
Решение:
По теореме 1 (см. п. 135), данное уравнение равносильно уравнению 


Пример 2.
Решение:
Это уравнение сводится к линейному уравнению. Умножив обе части уравнения на 12 (наименьшее общее кратное знаменателей 3, 4, 6,12), получим
Квадратные уравнения
где 







Выражение 
В случае, когда D = О, иногда говорят, что квадратное уравнение имеет два одинаковых корня.
Используя обозначение 


Формула (3) особенно удобна, если 

Пример 1.
Решение:
Здесь 
Так как 
Итак, 

Пример 2.
Решить уравнение
Решение:
Здесь 

Пример 3.
Решить уравнение
Решение:
Здесь 
Рациональные уравнения
Уравнение f(x) = g(x) называют рациональным, если f(x) и g(x) — рациональные вьфажения. При этом если f(x) и g(x) — целые выражения, то уравнение называют целым; если же хотя бы одно из выражений f(х), g(x) является дробным, то рациональное уравнение f(x) = g(x) называют дробным.
Например, целыми являются линейные (см. п. 136), квадратные (см. п. 137) уравнения.
Чтобы решить рациональное уравнение, нужно:
1) найти общий знаменатель всех имеющихся дробей;
2) заменить данное уравнение целым, умножив обе его части на общий знаменатель;
3) решить полученное целое уравнение;
4) исключить из его корней те, которые обращают в нуль общий знаменатель.
Пример:
Решение:
Общим знаменателем имеющихся дробей является 2х(2 — х). Найдя дополнительные множители для каждой дроби, освободимся от знаменателей. Имеем:
Из уравнения 


Решение уравнения р(х) = 0 методом разложения его левой части на множители
Суть этого метода состоит в следующем. Пусть нужно решить уравнение р(х) = 0, где р(х) — многочлен степени 







Значит, 
Верно и обратное: если 



Итак, если 



Пример 1.
Решить уравнение
Решение:
Разложим на множители левую часть уравнения. Имеем 
Значит, либо х + 2 = 0, либо 
Метод разложения на множители применим к любым уравнениям вида р(х) = 0, где р(х) необязательно многочлен. Пусть 



Пример 2.
Решить уравнение
Решение:
Имеем 





Но х = -3 не удовлетворяет исходному уравнению, так как при этом значении не определено выражение 
Итак, уравнение имеет два корня: 3; 0.
Решение уравнений методом введения новой переменной
Суть этого метода поясним на примерах.
Пример 1.
Решение:
Положив 
откуда находим 
Первое квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен.
Из второго квадратного уравнения находим 
Пример 2.
Решение:
Положим 
и уравнение примет вид
Решив это уравнение (см. п. 145), получим
Но 
Из первого уравнения находим 



Биквадратные уравнения
Биквадратным уравнением называют уравнение вида
Биквадратное уравнение решается методом введения новой переменной: положив 
Пример:
Решить уравнение 
Решение:
Положив 




Решение задач с помощью составления уравнений
С помощью уравнений решаются многочисленные задачи, к которым приводят самые разнообразные вопросы физики, механики, экономики и т. д. Прежде всего напомним общий порядок решения задач с помощью уравнений.
1) Вводят переменные, т. е. буквами х, у, z обозначают неизвестные величины, которые либо требуется найти в задаче, либо они необходимы для отыскания искомых величин.
2) С помощью введенных переменных и данных в задаче чисел и их соотношений составляют систему уравнений (или одно уравнение).
3) Решают составленную систему уравнений (или уравнение) и из полученных решений отбирают те, которые подходят по смыслу задачи.
4) Если буквами х, у, z обозначили не искомые величины, то с помощью полученных решений находят ответ на вопрос задачи.
Задача 1.
Для перевозки 60 т груза из одного места в другое затребовали некоторое количество машин. Ввиду неисправности дороги на каждую машину пришлось грузить на 0,5 т меньше, чем предполагалось, поэтому дополнительно потребовались 4 машины. Какое количество машин было затребовано первоначально?
Решение: Обозначим через х количество машин, затребованных первоначально. Тогда на самом деле было вызвано (х + 4) машин. Так как надо было перевезти 60 т груза, то предполагалось, что на одну машину будут грузить 

Это уравнение имеет два корня: х = -24, х = 20. Ясно, что по смыслу задачи значение х = —24 не подходит. Таким образом, первоначально было затребовано 20 машин.
Задача 2.
Моторная лодка, движущаяся со скоростью 20 км/ч, прошла расстояние между двумя пунктами по реке туда и обратно без остановок за 6 ч 15 мин. Расстояние между пунктами равно 60 км. Найти скорость течения реки.
Решение:
Пусть х км/ч — скорость течения реки. Тогда лодка, собственная скорость которой 20 км/ч, идет по течению со скоростью (20 + х) км/ч, а против течения — со скоростью (20 — х) км/ч. Время, за которое лодка пройдет путь между пунктами по течению, составит 


решив которое, находим два корня: х = 4, х = -4. Ясно, что значение х = -4 не подходит по смыслу задачи. Итак, скорость течения реки равна 4 км/ч.
Задача 3.
Найти двузначное число, зная, что цифра его единиц на 2 больше цифры десятков и что произведение искомого числа на сумму его цифр равно 144.
Решение:
Напомним, что любое двузначное число может быть записано в виде 10х + у, где х — цифра десятков, а у — цифра единиц. Согласно условию, если х — цифра десятков, то цифра единиц равна х + 2 и мы получаем
Решив это уравнение, найдем
Второй корень не подходит по смыслу задачи.
Итак, цифра десятков равна 2, цифра единиц равна 4; значит, искомое число равно 24.
Задача 4.
Двое рабочих, работая вместе, выполнили некоторую работу за 6 ч. Первый из них, работая отдельно, может выполнить всю работу на 5 ч скорее, чем второй рабочий, если последний будет работать отдельно. За сколько часов каждый из них, работая отдельно, может выполнить всю работу?
Решение:
Производительность труда, т. е. часть работы, выполняемая в единицу времени (обозначим ее через А), и время, необходимое для выполнения всей работы (обозначим его через t), — взаимно обратные величины, т. е. At = 1. Поэтому если обозначить через х ч время, необходимое для выполнения всей работы первому рабочему, а через (х + 5) ч — второму, то часть работы, выполняемая первым рабочим за 1 ч, равна 



решив которое, найдем х = 10.
Итак, первый рабочий может выполнить всю работу за 10 ч, а второй — за 15 ч.
Задача 5.
Из сосуда емкостью 54 л, наполненного кислотой, вылили несколько литров и долили сосуд водой, потом опять вылили столько же литров смеси. Тогда в оставшейся в сосуде смеси оказалось 24 л чистой кислоты. Сколько кислоты вылили в первый раз?
Решение:
Пусть в первый раз было вылито х л кислоты. Тогда в сосуде осталось (54 — х) л кислоты. Долив сосуд водой, получили 54 л смеси, в которой растворилось (54 — х) л кислоты. Значит, в 1 л смеси содержится 


за два раза вылито 54 — 24 = 30 л кислоты. В результате приходим к уравнению
Решив это уравнение, найдем два корня: 

Итак, в первый раз было вылито 18 л кислоты.
Задача 6.
Имеется кусок сплава меди с оловом массой 12 кг, содержащий 45% меди. Сколько чистого олова надо прибавить к этому куску, чтобы получившийся новый сплав содержал 40% меди?
Решение:
Пусть масса добавленного олова составляет х кг. Тогда получится сплав массой (12 + х) кг, содержащий 40% меди. Значит, в новом сплаве имеется 0,4(12 + х) кг меди. Исходный сплав массой 12 кг содержал 45% меди, т. е. меди в нем было 
Решив это уравнение, получим х = 1,5. Таким образом, к исходному сплаву надо добавить 1,5 кг олова.
Задача 7.
Имеется сталь двух сортов с содержанием никеля 5% и 40%. Сколько стали того и другого сорта надо взять, чтобы после переплавки получить 140 т стали с содержанием никеля 30% ?
Решение:
Пусть масса стали первого сорта равна х т, тогда стали второго сорта надо взять (140 — х) т. Содержание никеля в стали первого сорта составляет 5%; значит, в х т стали первого сорта содержится 0,05л; т никеля. Содержание никеля в стали второго сорта составляет 40%; значит, в (140 — х) т стеши второго сорта содержится 0,4 (140 — х) т никеля. По условию после соединения взятых двух сортов должно получиться 140 т стали с 30% -ным содержанием никеля, т. е. после переплавки в полученной стали должно быть 0,3 * 140 т никеля. Но это количество никеля складывается из 0,05л; т, содержащихся в стали первого сорта, и из 0,4 (140 — х) т, содержащихся в стали второго сорта. Таким образом, приходим к уравнению
0,05х + 0,4 (140 — х) = 0,3 * 140,
из которого находим х = 40. Следовательно, надо взять 40 т стали с 5% -ным и 100 т стали с 40% -ным содержанием никеля.
Иррациональные уравнения
Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень. Например, иррациональными являются уравнения
Используются два основных метода решения иррациональных уравнений:
1) метод возведения обеих частей уравнения в одну и ту же степень;
2) метод введения новых переменных (см. п. 147).
Метод возведения обеих частей уравнения в одну
и ту же степень состоит в следующем:
а) преобразуют заданное иррациональное уравнение к виду
б) возводят обе части полученного уравнения в п-ю степень:
в) учитывая, что 
г) решают уравнение и, в случае четного п, делают проверку, так как возведение обеих частей уравнения в одну и ту же четную степень может привести к появлению посторонних корней (см. п. 142). Эта проверка чаще всего осуществляется с помощью подстановки найденных значений переменной в исходное уравнение.
Пример 1.
Решить уравнение
Решение:
Возведем обе части уравнения в шестую степень; получим х — 3 = 64, откуда х = 67.
Проверка:
Подставив 67 вместо х в данное уравнение, получим 
Ответ: 67.
Пример 2.
Решение:
Преобразуем уравнение к виду
и возведем обе части его в квадрат. Получим
Еще раз возведем обе части уравнения в квадрат:
откуда
Проверка:
1) При х = 5 имеем

Таким образом, х = 5 является корнем заданного уравнения.
2) При х = 197 имеем 
Ответ: 5.
Пример 3.
Решение:
Применим метод введения новой переменной.
Положим 

Теперь задача свелась к решению совокупности уравнений
Возведя обе части уравнения 
Уравнение 
Ответ: 34.
Показательные уравнения
Показательное уравнение вида
где 
Имеются два основных метода решения показательных уравнений:
1) метод уравнивания показателей, т. е. преобразование заданного уравнения к виду 
2) метод введения новой переменной.
Пример 1.
Решить уравнение
Решение:
Данное уравнение равносильно уравнению 


Пример 2.
Решение:
Приведем все степени к одному основанию 




Пример 3.
Решить уравнение
Решение:
Применим метод введения новой переменной. Так как 
Введем новую переменную, положив 


Из первого уравнения находим х = 2. Второе уравнение не имеет корней, так как 
Ответ: 2.
Логарифмические уравнения
Чтобы решить логарифмическое уравнение вида
где 
1) решить уравнение f(x) = g(x);
2) из найденных корней отобрать те, которые удовлетворяют неравенствам f(x) > 0 и g(x) > 0; остальные корни уравнения f(x) = g(x) являются посторонними для уравнения (1).
Имеются два основных метода решения логарифмических уравнений:
1) метод, заключающийся в преобразовании уравнения к виду 
2) метод введения новой переменной.
Пример 1.
Решение:
Перейдем от заданного уравнения к уравнению 


Ответ: -3.
Пример 2.
Решение:
Воспользовавшись тем, что сумма логарифмов равна логарифму произведения (см. п. 120), преобразуем уравнение к виду
Из последнего уравнения находим
Осталось сделать проверку. Ее можно выполнить с помощью системы неравенств
Подставив поочередно найденные значения -1 и -5,5 в эти неравенства, убеждаемся, что -1 удовлетворяет всем неравенствам, а -5,5 — нет, например при этом значении не выполняется первое неравенство. Значит, -5,5 — посторонний корень.
Ответ: -1.
Пример 3.
Решение:
Так как 

Введем новую переменную, положив 
Но 

Ответ: 4.
Примеры решения показательно-логарифмических уравнений
Пример 1.
Решение:
Область определения уравнения: х > 0. При этом условии выражения, входящие в обе части уравнения (1), принимают только положительные значения. Прологарифмировав обе части уравнения (1) по основанию 10, получим уравнение
равносильное уравнению (1). Далее имеем
Полагая 




Здесь применен метод логарифмирования, заключающийся в переходе от уравнения f(x) = g(x) к уравнению
Пример 2.

Решение:
Воспользовавшись определением логарифма, преобразуем уравнение (2) к виду
Полагая 

Теперь задача сводится к решению совокупности уравнений
Так как 
если 



Итак, если 






Пример 3.
При каких значениях параметра 
имеет два различных отрицательных корня?
Решение:
Так как уравнение должно иметь два различных действительных корня 
Значит, должно выполняться неравенство
По теореме Виета для заданного уравнения имеем
Так как, по условию, 

В итоге мы приходим к системе неравенств (см. п. 177):
Из первого неравенства системы находим (см. п. 180, 183) 



Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Алгебра Система уравнений Метод замены переменной № 6.22 9 классСкачать

4. Метод введения новой переменной
Теория:
Способ подстановки применяется в более сложных примерах. Он заключается в следующем.
Показательное уравнение можно решить, введя новое обозначение. После подстановки в исходное уравнение нового обозначения получим новое, более простое уравнение, решив которое, возвращаемся к подстановке и находим корни исходного уравнения.
Рассмотрим способ подстановки на примерах.
Уравнение 3 x = 9 имеет корень x = 2 , а уравнение 3 x = − 5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
💥 Видео
Решение рациональных уравнений методом введения новой переменной | Алгебра 8 класс #37 | ИнфоурокСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

276 (в, г) Решите уравнение используя введение новой переменнойСкачать

276 Алгебра 9 класс. Решите уравнение используя введение новой переменнойСкачать

358 (а) Алгебра 9 класс Решите Уравнение, используя введение новой переменнойСкачать

9 класс, 11 урок, Методы решения систем уравненийСкачать

решение уравнения с заменой переменнойСкачать

Решение показательных уравнений способом введения новой переменнойСкачать

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

Решение уравнений методом замены переменной.Скачать

Уравнение, которое решается введением новой переменной. Уравнение (х^2 + 1)/х - х/(х^2 + 1) = 3/2Скачать

Квадратные уравнения. Метод введения новой переменнойСкачать

Решение системы нелинейных уравнений методом введения новой переменной. 9 класс алгебра.Скачать

Метод введения новой переменной при решении иррациональных уравненийСкачать

, это уравнение вида f1(g(x))=f2(g(x)) , здесь в качестве g(x) можно рассматривать x 2 +2·x , тогда функции f1 и f2 таковы, что
и
;
, это уравнение, имеющее вид f(g(x))=0 , где
, а функция f описывается как
.
, то соответствующая совокупность будет иметь вид
).




























































































