Квадратный корень из комплексного числа
Корни четвертой и пятой степени
Возведение в степень
Мнимая и действительная часть
Можно использовать следующие функции от z (например, от z = 1 + 2.5j):
- Правила ввода выражений и функций
- Где учитесь?
- Калькулятор комплексных чисел. Вычисление выражений с комплексными числами
- Как пользоваться калькулятором
- Ввод комплексных чисел
- Поддерживаемые операции и математические функции
- Примеры корректных выражений
- Комплексные числа
- Примеры комплексных чисел
- Основные действия с комплексными числами
- Примеры
- Другие действия над комплексными числами
- Примеры
- Формы представления комплексных чисел
- Пример:
- Решение уравнений с комплексными числами
- 💡 Видео
Правила ввода выражений и функций
3.14159.. e Число e — основание натурального логарифма, примерно равно
2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности
© Контрольная работа РУ — калькуляторы онлайн
Видео:Формула Муавра ➜ Вычислить ➜ (5+5i)⁷Скачать
Где учитесь?
Для правильного составления решения, укажите:
Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать
Калькулятор комплексных чисел. Вычисление выражений с комплексными числами
Калькулятор комплексных чисел позволяет вычислять арифметические выражения, содержащие комплексные числа, знаки арифметических действий (+, -, *, /, ^), а также некоторые математические функции.
Калькулятор комплексных чисел
Видео:Комплексные корни квадратного уравненияСкачать
Как пользоваться калькулятором
- Введите в поле ввода выражение с комплексными числами
- Укажите, требуется ли вывод решения переключателем «С решением»
- Нажмите на кнопку «Построить»
Видео:комплЕксные ЧИСЛА решение примеров МАТЕМАТИКАСкачать
Ввод комплексных чисел
комплексные числа можно вводить в следующих трёх форматах:
- Только действительная часть: 2, 2.5, -6.7, 12.25
- Только мнимая часть: i, -i, 2i, -5i, 2.16i, -12.5i
- Действительная и мнимая части: 2+i, -5+15i, -7+2.5i, -6+i
- Математические константы: π, e
Видео:10 класс, 35 урок, Комплексные числа и квадратные уравненияСкачать
Поддерживаемые операции и математические функции
- Арифметические операции: +, -, *, /, ^
- Получение абсолютного значения числа: abs
- Базовые математические функции: exp, ln, sqrt
- Получение действительной и мнимой частей: re, im
- Тригонометрические функции: sin, cos, tg, ctg
- Гиперболические функции: sh, ch, th, cth
- Обратные тригонометрические функции: arcsin, arccos, arctg, arcctg
- Обратные гиперболические функции: arsh, arch, arth, arcth
Видео:Решение биквадратных уравнений. 8 класс.Скачать
Примеры корректных выражений
- (2+3i)*(5-7i)
- sh(i)
- (4+i) / (3 — 4i)
- sqrt(2i)
- (-3+4i)*2i / exp(2i + (15 — 8i)/4 — 3.75)
Видео:Сложение, вычитание, умножение и деление комплексных чисел | Высшая математикаСкачать
Комплексные числа
Комплексные числа — это числа вида x+iy , где x , y — вещественные числа, а i — мнимая единица (специальное число, квадрат которого равен -1, то есть i 2 = -1 ).
Так же, как и для вещественных чисел, для комплексных чисел определены операции сложения, разности, умножения и деления, однако комплексные числа нельзя сравнивать.
Видео:Комплексные числа #1Скачать
Примеры комплексных чисел
- 4+3i — действительная часть = 4, мнимая = 3
- -2+i — действительная часть = -2, мнимая = 1
- i — действительная часть = 0, мнимая = 1
- -i — действительная часть = 0, мнимая = -1
- 10 — действительная часть = 10, мнимая = 0
Видео:Как мнимые числа спасли математику [Veritasium]Скачать
Основные действия с комплексными числами
Основными операциями, определёнными для комплексных чисел, являются сложение, разность, произведение и деление комплексных чисел. Операции для двух произвольных комплексных чисел (a + bi) и (c + di) определяются следующим образом:
- сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
- вычитание: (a + bi) — (c + di) = (a — c) + (b — d)i
- умножение: (a + bi) · (c + di) = ac + bci + adi + bdi 2 = (ac — bd) + (bc + ad)i
- деление:
Примеры
Найти сумму чисел 5+7i и 5.5-2i :
Найдём отдельно суммы действительных частей и сумму мнимых частей: re = 5 + 5.5 = 10.5, im = 7 — 2 = 5.
Запишем их рядом, добавив к мнимой части i: 10.5 + 5i
Полученное число и будет ответом: 5+7i + 5.5-2i = 10.5 + 5i
Найти разность чисел 12-i и -2i :
Найдём отдельно разности действительных частей и разности мнимых частей: re = 12 — 0 = 12, im = -1 — (-2) = 1.
Запишем их рядом, добавив к мнимой части i: 12 + 1i
Полученное число и будет ответом: 12-i — (-2i) = 12 + i
Найти произведение чисел 2+3i и 5-7i :
Найдём по формуле действительную и мнимую части: re = 2·5 — 3·(-7) = 31, im = 3·5 + 2·(-7) = 1.
Запишем их рядом, добавив к мнимой части i: 31 + 1i
Полученное число и будет ответом: 2+3i * (5-7i) = 31 + i
Найти отношение чисел 75-50i и 3+4i :
Найдём по формуле действительную и мнимую части: re = (75·3 — 50·4) / 25 = 1, im = (-50·3 — 75·4) / 25 = -18.
Запишем их рядом, добавив к мнимой части i: 1 — 18i
Полученное число и будет ответом: 75-50i / (3+4i) = 1 — 18i
Видео:Биквадратное уравнение. Комплексные корни.Скачать
Другие действия над комплексными числами
Помимо базовых операций сложения, вычитания, умножения и деления комплексных чисел существуют также различные математические функции. Рассмотрим некоторые из них:
- Получение действительной части числа: Re(z) = a
- Получение мнимой части числа: Im(z) = b
- Модуль числа: |z| = √(a 2 + b 2 )
- Аргумент числа: arg z = arctg(b / a)
- Экспонента: e z = e a ·cos(b) + i·e a ·sin(b)
- Логарифм: Ln(z) = ln |z| + i·arg(z)
- Тригонометрические функции: sin z, cos z, tg z, ctg z
- Гиперболические функции: sh z, ch z, th z, cth z
- Обратные тригонометрические функции: arcsin z, arccos z, arctg z, arcctg z
- Обратные гиперболические функции: arsh z, arch z, arth z, arcth z
Примеры
Найти действительную и мнимую части числа z, а также его модуль, если z = 4 — 3i
Re(z) = Re(4 — 3i) = 4
Im(z) = Im(4 — 3i) = -3
|z| = √(4 2 + (-3) 2 ) = √25 = 5
Видео:10 класс, 32 урок, Комплексные числа и арифметические операции над нимиСкачать
Формы представления комплексных чисел
Комплексные числа принято представлять в одной из трёх следующих форм: алгебраической, тригонометрической и показательной.
- Алгебраическая форма — наиболее часто используемая форма комплексного числа, запись числа в виде суммы действительной и мнимой частей: x+iy , где x — действительная часть, а y — мнимая часть
- Тригонометричкая форма — запись вида r·(cos φ + isin φ) , где r — модуль комплексного числа (r = |z|), а φ — аргумент этого числа (φ = arg(z))
- Показательная форма — запись вида r·e iφ , где r — модуль комплексного числа (r = |z|), e — число Эйлера, а φ — аргумент комплексного числа (φ = arg(z))
Пример:
Переведите число 1+i в тригонометрическую и показательную формы:
- Найдём радиус (модуль) комплексного числа r: r = √(1 2 + 1 2 ) = √2
- Найдём аргумент числа: φ = arctan(
Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать
Решение уравнений с комплексными числами
Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.
Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:
где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = .
Пример 1. Найти все корни уравнения
Выразим z из уравнения:
Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа
Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:
Подставим найденные значения в формулу:
Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.
Пример 2. Найти все корни уравнения
Найдем дискриминант уравнения:
Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:
Найдем корни уравнения:
Ответ:
Пример 3. Найти все корни уравнения
Выразим z из уравнения:
Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа
Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = . Найдем модуль комплексного числа:
Подставим найденные значения в формулу:
Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:
Пример 4. Найти корни уравнения
Решение кубического уравнения комплексными числами:
Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.
Найдем все необходимые значения для формулы:
Подставим найденные значения в формулу:
Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:
Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.
Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.
После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.
Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.
Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.
Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.
Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.
💡 Видео
Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать
Степени мнимой единицыСкачать
Комплексные числа в уравненияхСкачать
Комплексные корни квадратных уравнений. 11 класс.Скачать
Комплексные числа: начало. Высшая математика или школа?Скачать
Отрицательный дискриминантСкачать
Уравнение с комплексными числамиСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать