Решение уравнений с мнимой единицей

Решение уравнений с мнимой единицей

Квадратный корень из комплексного числа

Корни четвертой и пятой степени

Возведение в степень

Мнимая и действительная часть

Можно использовать следующие функции от z (например, от z = 1 + 2.5j):

Правила ввода выражений и функций

3.14159.. e Число e — основание натурального логарифма, примерно равно

2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности

© Контрольная работа РУ — калькуляторы онлайн

Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

Где учитесь?

Для правильного составления решения, укажите:

Видео:Формула Муавра ➜ Вычислить ➜ (5+5i)⁷Скачать

Формула Муавра ➜ Вычислить ➜ (5+5i)⁷

Калькулятор комплексных чисел. Вычисление выражений с комплексными числами

Калькулятор комплексных чисел позволяет вычислять арифметические выражения, содержащие комплексные числа, знаки арифметических действий (+, -, *, /, ^), а также некоторые математические функции.

Калькулятор комплексных чисел

Видео:Комплексные корни квадратного уравненияСкачать

Комплексные корни квадратного уравнения

Как пользоваться калькулятором

  1. Введите в поле ввода выражение с комплексными числами
  2. Укажите, требуется ли вывод решения переключателем «С решением»
  3. Нажмите на кнопку «Построить»

Видео:Сложение, вычитание, умножение и деление комплексных чисел | Высшая математикаСкачать

Сложение, вычитание, умножение и деление комплексных чисел | Высшая математика

Ввод комплексных чисел

комплексные числа можно вводить в следующих трёх форматах:

  • Только действительная часть: 2, 2.5, -6.7, 12.25
  • Только мнимая часть: i, -i, 2i, -5i, 2.16i, -12.5i
  • Действительная и мнимая части: 2+i, -5+15i, -7+2.5i, -6+i
  • Математические константы: π, e

Видео:Комплексные числа #1Скачать

Комплексные числа #1

Поддерживаемые операции и математические функции

  • Арифметические операции: +, -, *, /, ^
  • Получение абсолютного значения числа: abs
  • Базовые математические функции: exp, ln, sqrt
  • Получение действительной и мнимой частей: re, im
  • Тригонометрические функции: sin, cos, tg, ctg
  • Гиперболические функции: sh, ch, th, cth
  • Обратные тригонометрические функции: arcsin, arccos, arctg, arcctg
  • Обратные гиперболические функции: arsh, arch, arth, arcth

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Примеры корректных выражений

  • (2+3i)*(5-7i)
  • sh(i)
  • (4+i) / (3 — 4i)
  • sqrt(2i)
  • (-3+4i)*2i / exp(2i + (15 — 8i)/4 — 3.75)

Видео:комплЕксные ЧИСЛА решение примеров МАТЕМАТИКАСкачать

комплЕксные ЧИСЛА решение примеров МАТЕМАТИКА

Комплексные числа

Комплексные числа — это числа вида x+iy , где x , y — вещественные числа, а i — мнимая единица (специальное число, квадрат которого равен -1, то есть i 2 = -1 ).
Так же, как и для вещественных чисел, для комплексных чисел определены операции сложения, разности, умножения и деления, однако комплексные числа нельзя сравнивать.

Видео:10 класс, 35 урок, Комплексные числа и квадратные уравненияСкачать

10 класс, 35 урок, Комплексные числа и квадратные уравнения

Примеры комплексных чисел

  • 4+3i — действительная часть = 4, мнимая = 3
  • -2+i — действительная часть = -2, мнимая = 1
  • i — действительная часть = 0, мнимая = 1
  • -i — действительная часть = 0, мнимая = -1
  • 10 — действительная часть = 10, мнимая = 0

Видео:10 класс, 32 урок, Комплексные числа и арифметические операции над нимиСкачать

10 класс, 32 урок, Комплексные числа и арифметические операции над ними

Основные действия с комплексными числами

Основными операциями, определёнными для комплексных чисел, являются сложение, разность, произведение и деление комплексных чисел. Операции для двух произвольных комплексных чисел (a + bi) и (c + di) определяются следующим образом:

  • сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
  • вычитание: (a + bi) — (c + di) = (a — c) + (b — d)i
  • умножение: (a + bi) · (c + di) = ac + bci + adi + bdi 2 = (ac — bd) + (bc + ad)i
  • деление:

Примеры

Найти сумму чисел 5+7i и 5.5-2i :
Найдём отдельно суммы действительных частей и сумму мнимых частей: re = 5 + 5.5 = 10.5, im = 7 — 2 = 5.
Запишем их рядом, добавив к мнимой части i: 10.5 + 5i
Полученное число и будет ответом: 5+7i + 5.5-2i = 10.5 + 5i

Найти разность чисел 12-i и -2i :
Найдём отдельно разности действительных частей и разности мнимых частей: re = 12 — 0 = 12, im = -1 — (-2) = 1.
Запишем их рядом, добавив к мнимой части i: 12 + 1i
Полученное число и будет ответом: 12-i — (-2i) = 12 + i

Найти произведение чисел 2+3i и 5-7i :
Найдём по формуле действительную и мнимую части: re = 2·5 — 3·(-7) = 31, im = 3·5 + 2·(-7) = 1.
Запишем их рядом, добавив к мнимой части i: 31 + 1i
Полученное число и будет ответом: 2+3i * (5-7i) = 31 + i

Найти отношение чисел 75-50i и 3+4i :
Найдём по формуле действительную и мнимую части: re = (75·3 — 50·4) / 25 = 1, im = (-50·3 — 75·4) / 25 = -18.
Запишем их рядом, добавив к мнимой части i: 1 — 18i
Полученное число и будет ответом: 75-50i / (3+4i) = 1 — 18i

Видео:Биквадратное уравнение. Комплексные корни.Скачать

Биквадратное уравнение. Комплексные корни.

Другие действия над комплексными числами

Помимо базовых операций сложения, вычитания, умножения и деления комплексных чисел существуют также различные математические функции. Рассмотрим некоторые из них:

  • Получение действительной части числа: Re(z) = a
  • Получение мнимой части числа: Im(z) = b
  • Модуль числа: |z| = √(a 2 + b 2 )
  • Аргумент числа: arg z = arctg(b / a)
  • Экспонента: e z = e a ·cos(b) + i·e a ·sin(b)
  • Логарифм: Ln(z) = ln |z| + i·arg(z)
  • Тригонометрические функции: sin z, cos z, tg z, ctg z
  • Гиперболические функции: sh z, ch z, th z, cth z
  • Обратные тригонометрические функции: arcsin z, arccos z, arctg z, arcctg z
  • Обратные гиперболические функции: arsh z, arch z, arth z, arcth z

Примеры

Найти действительную и мнимую части числа z, а также его модуль, если z = 4 — 3i
Re(z) = Re(4 — 3i) = 4
Im(z) = Im(4 — 3i) = -3
|z| = √(4 2 + (-3) 2 ) = √25 = 5

Видео:Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

Формы представления комплексных чисел

Комплексные числа принято представлять в одной из трёх следующих форм: алгебраической, тригонометрической и показательной.

  • Алгебраическая форма — наиболее часто используемая форма комплексного числа, запись числа в виде суммы действительной и мнимой частей: x+iy , где x — действительная часть, а y — мнимая часть
  • Тригонометричкая форма — запись вида r·(cos φ + isin φ) , где r — модуль комплексного числа (r = |z|), а φ — аргумент этого числа (φ = arg(z))
  • Показательная форма — запись вида r·e iφ , где r — модуль комплексного числа (r = |z|), e — число Эйлера, а φ — аргумент комплексного числа (φ = arg(z))

Пример:

Переведите число 1+i в тригонометрическую и показательную формы:

  • Найдём радиус (модуль) комплексного числа r: r = √(1 2 + 1 2 ) = √2
  • Найдём аргумент числа: φ = arctan(

Видео:Как мнимые числа спасли математику [Veritasium]Скачать

Как мнимые числа спасли математику [Veritasium]

Решение уравнений с комплексными числами

Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.

Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:

Решение уравнений с мнимой единицей
где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = .

Пример 1. Найти все корни уравнения

Решение уравнений с мнимой единицей

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа

Решение уравнений с мнимой единицей

Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:

Решение уравнений с мнимой единицейРешение уравнений с мнимой единицей
Подставим найденные значения в формулу:

Решение уравнений с мнимой единицей

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.

Решение уравнений с мнимой единицей

Пример 2. Найти все корни уравнения

Решение уравнений с мнимой единицей

Найдем дискриминант уравнения:

Решение уравнений с мнимой единицей
Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:

Решение уравнений с мнимой единицей

Найдем корни уравнения:

Решение уравнений с мнимой единицей
Ответ:

Решение уравнений с мнимой единицей

Пример 3. Найти все корни уравнения

Решение уравнений с мнимой единицей

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа

Решение уравнений с мнимой единицей

Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = . Найдем модуль комплексного числа:

Решение уравнений с мнимой единицей

Подставим найденные значения в формулу:

Решение уравнений с мнимой единицей

Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:

Решение уравнений с мнимой единицей

Решение уравнений с мнимой единицей

Пример 4. Найти корни уравнения

Решение уравнений с мнимой единицей
Решение кубического уравнения комплексными числами:

Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.

Найдем все необходимые значения для формулы:

Решение уравнений с мнимой единицей
Подставим найденные значения в формулу:

Решение уравнений с мнимой единицей

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:

Решение уравнений с мнимой единицей

Решение уравнений с мнимой единицей

Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.

Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.

После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.

Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.

Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.

Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.

Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.

🔍 Видео

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Комплексные корни квадратных уравнений. 11 класс.Скачать

Комплексные корни квадратных уравнений. 11 класс.

Комплексные числа в уравненияхСкачать

Комплексные числа в уравнениях

Отрицательный дискриминантСкачать

Отрицательный дискриминант

Комплексные числа: начало. Высшая математика или школа?Скачать

Комплексные числа: начало. Высшая математика или школа?

Степени мнимой единицыСкачать

Степени мнимой единицы

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Уравнение с комплексными числамиСкачать

Уравнение с комплексными числами
Поделиться или сохранить к себе: