Решение уравнений с интегралами i

Решения интегральных уравнений онлайн

В этом разделе мы рассмотрим типовые задачи по интегральным уравнениям с решениями. Интегральное уравнение содержит неизвестную функцию под знаком интеграла (по аналогии как дифференциальное — функцию под знаком дифференциала:)).

Выделяют два основных класса интегральных уравнений: уравнения Фредгольма I и II рода:

$$ (I) quad int_a^b K(x,s)u(s)ds = f(x),\ (II) quad u(x)=int_a^b K(x,s)u(s)ds + f(x). $$

В случае переменного верхнего предела интегрирования получаем соответственно уравнение Вольтерра I и II рода:

$$ (I) quad int_a^x K(x,s)u(s)ds = f(x),\ (II) quad u(x)=int_a^x K(x,s)u(s)ds + f(x). $$

Это линейные неоднородные уравнения (при $f(x)=0$ — однородные), иногда рассматриваются более общий случай с параметром $lambda$ перед интегралом.

Ниже вы найдете примеры нахождения решений интегральных уравнений, собственных значений и функций, исследования ядра, применения интегральных уравнений для решения других задач.

Видео:Определенный интеграл. 11 класс.Скачать

Определенный интеграл. 11 класс.

Примеры решений интегральных уравнений

Задача 1. Пользуясь теоремой Гильберта-Шмидта, исследовать и решить интегральное уравнение 2-го рода $(E+lambda A)x=y$ в гильбертовом пространстве $X$.

Задача 2. Найти собственные значения и собственные функции уравнения:

$$ y(x)=lambda int_0^1 (cos 2pi x +2x sin 2pi t +t sin pi x)y(t)dt. $$

Задача 3. Решить уравнение Вольтерры, сведя его к обыкновенному дифференциальному уравнению.

Задача 4. Решить или установить неразрешимость уравнений с вырожденным ядром.

Задача 5. Решить интегральное уравнение, сведя его предварительно к обыкновенному дифференциальному уравнению.

Задача 6. Найти резольвенту для интегрального уравнения Вольтерры со следующим ядром $K(x,t)=x^t^$.

Задача 7. Исследовать решения уравнения с вырожденным ядром при различных значениях параметра $lambda$ (ограничиться случаем вещественных характеристических чисел).

$$ y(x)-lambda int_0^1 x y(t)dt = sin 2pi x. $$

Задача 8. Для симметричного ядра $$K(x,t) = frac sin |x-t| quad (0 le, x,t le pi)$$ найти характеристические числа и соответствующие им собственные функции, сводя интегральное уравнение к однородной краевой задаче для обыкновенного дифференциального уравнения.

Задача 9. Решить краевую задачу, используя функцию Грина

Задача 10. Применяя преобразование Лапласа, решить интегральное уравнение

Видео:Математика без ху!ни. Интегралы, часть 1. Первообразная. Дифференцирование и интегрирование.Скачать

Математика без ху!ни. Интегралы, часть 1. Первообразная. Дифференцирование и интегрирование.

Помощь с интегральными уравнениями

Если вам нужна помощь с решением задач и контрольных по интегральным уравнениям (и другим разделам математического и функционального анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 200 рублей , оформление производится в Word, срок от 1 дня.

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Калькулятор Интегралов. Решение Определенных и Неопределенных Интегралов (первообразных)

Верхний предел
Нижний предел

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Видео:Видеоурок по математике "Вычисление интегралов - 1"Скачать

Видеоурок по математике "Вычисление интегралов - 1"

Вычисление простейших неопределённых интегралов

И снова здравствуйте, друзья!

Как я и обещал, с этого урока мы начнём бороздить бескрайние просторы поэтического мира интегралов и приступим к решению самых разнообразных (порой, очень красивых) примеров. 🙂

Чтобы грамотно ориентироваться во всём интегральном многообразии и не заблудиться, нам потребуется всего четыре вещи:

1) Таблица интегралов. Все подробности о ней — в предыдущем материале. Как именно с ней работать — в этом.

2) Свойства линейности неопределённого интеграла (интеграл суммы/разности и произведения на константу).

3) Таблица производных и правила дифференцирования.

Да-да, не удивляйтесь! Без умения считать производные, в интегрировании ловить совершенно нечего. Согласитесь, бессмысленно, например, учиться делению, не умея умножать. 🙂 И очень скоро вы увидите, что без отточенных навыков дифференцирования не посчитать ни один сколь-нибудь серьёзный интеграл, выходящий за рамки элементарных табличных.

4) Методы интегрирования.

Их очень и очень много. Для конкретного класса функций — свой. Но среди всего их богатого разнообразия выделяется три базовых:

О каждом из них — в отдельных уроках.

А теперь, наконец, приступим к решению долгожданных примеров. Чтобы не скакать из раздела в раздел, я продублирую ещё разок весь джентльменский набор, который пригодится для нашей дальнейшей работы. Пусть весь инструментарий будет под рукой.)

Прежде всего, это таблица интегралов:

Решение уравнений с интегралами i

Кроме того, нам понадобятся базовые свойства неопределённого интеграла (свойства линейности):

Решение уравнений с интегралами i

Что ж, необходимая снаряга подготовлена. Пора в путь! 🙂

Прямое применение таблицы

В данном параграфе будут рассматриваться самые простые и безобидные примеры. Алгоритм здесь прост до ужаса:

1) Смотрим в таблицу и ищем нужную формулу (формулы);

2) Применяем свойства линейности (где требуется);

3) Осуществляем превращение по табличным формулам и прибавляем в конце константу С (не забываем!) ;

4) Записываем ответ.

Пример 1

Решение уравнений с интегралами i

Такой функции в нашей таблице нет. Зато есть интеграл от степенной функции в общем виде (вторая группа). В нашем случае n = 5. Вот и подставляем пятёрку вместо n и аккуратно считаем результат:

Решение уравнений с интегралами i

Разумеется, этот пример совсем примитивный. Чисто для знакомства.) Зато умение интегрировать степени позволяет легко считать интегралы от любых многочленов и прочих степенных конструкций.

Пример 2

Решение уравнений с интегралами i

Под интегралом сумма. Ну и ладно. У нас на этот случай есть свойства линейности. 🙂 Разбиваем наш интеграл на три отдельных, выносим все константы за знаки интегралов и считаем каждый по таблице (группа 1-2):

Решение уравнений с интегралами i

Решение уравнений с интегралами i

Прошу обратить внимание: константа С появляется именно в тот момент, когда исчезают ВСЕ знаки интеграла! Конечно, после этого приходится её постоянно таскать за собой. А что делать…

Разумеется, так подробно расписывать обычно не требуется. Это чисто для понимания сделано. Чтобы суть уловить.)

Например, очень скоро, особо не раздумывая, вы в уме будете давать ответ к монстрам типа:

Решение уравнений с интегралами i

Многочлены — самые халявные функции в интегралах.) А уж в диффурах, в физике, в сопромате и прочих серьёзных дисциплинах интегрировать многочлены придётся постоянно. Привыкайте.)

Следующий примерчик будет чуть покруче.

Пример 3

Решение уравнений с интегралами i

Надеюсь, всем понятно, что наше подынтегральное выражение можно расписать вот так:

Решение уравнений с интегралами i

Подынтегральная функция отдельно, а множитель dx (значок дифференциала) — отдельно.

Замечание: в этом уроке множитель dx в процессе интегрирования пока никак не участвует, и мы на него пока что мысленно «забиваем». 🙂 Работаем только с подынтегральной функцией. Но забывать про него не будем. Совсем скоро, буквально на следующем уроке, посвящённом подведению функции под знак дифференциала , мы про него вспомним. И ощутим всю важность и мощь этого значка в полную силу!)

А пока наш взор обращён на подынтегральную функцию

Решение уравнений с интегралами i

Не очень похоже на степенную функцию, но это она. 🙂 Если вспомнить школьные свойства корней и степеней, то вполне можно преобразовать нашу функцию:

Решение уравнений с интегралами i

А икс в степени минус две трети — это уже табличная функция! Вторая группа, n=-2/3. А константа 1/2 нам не помеха. Выносим её наружу, за знак интеграла, и прямо по формуле считаем:

Решение уравнений с интегралами i

В этом примере нам помогли элементарные свойства степеней. И так надо делать в большинстве случаев, когда под интегралом стоят одинокие корни или дроби. Посему пара практических советов при интегрировании степенных конструкций:

Заменяем дроби степенями с отрицательными показателями;

Заменяем корни степенями с дробными показателями.

А вот в окончательном ответе переход от степеней обратно к дробям и корням — дело вкуса. Лично я перехожу обратно — так эстетичнее, что ли.

И, пожалуйста, аккуратно считаем все дроби! Внимательно следим за знаками и за тем, что куда идёт — что в числитель, а что знаменатель.

Что? Надоели уже скучные степенные функции? Ну ладно! Берём быка за рога!

Пример 4

Решение уравнений с интегралами i

Если сейчас привести всё под интегралом к общему знаменателю, то можно застрять на этом примере всерьёз и надолго.) Но, присмотревшись повнимательнее к подынтегральной функции, можно заметить, что наша разность состоит из двух табличных функций. Так что не будем извращаться, а вместо этого разложим наш интеграл на два:

Решение уравнений с интегралами i

Первый интеграл — обычная степенная функция, (2-я группа, n = -1): 1/x = x -1 .

Традиционная наша формула для первообразной степенной функции

Решение уравнений с интегралами i

здесь не работает, но зато у нас для n = -1 есть достойная альтернатива — формула с натуральным логарифмом. Вот эта:

Решение уравнений с интегралами i

Тогда, согласно этой формуле, первая дробь проинтегрируется так:

Решение уравнений с интегралами i

А вторая дробь — тоже табличная функция! Узнали? Да! Это седьмая формула с «высоким» логарифмом:

Решение уравнений с интегралами i

Константа «а» в этой формуле равна двойке: a=2.

Решение уравнений с интегралами i

Важное замечание: Обратите внимание, константу С при промежуточном интегрировании я нигде не приписываю! Почему? Потому что она пойдёт в окончательный ответ всего примера. Этого вполне достаточно.) Строго говоря, константу надо писать после каждого отдельного интегрирования — хоть промежуточного, хоть окончательного: так уж неопределённый интеграл требует…)

Например, после первого интегрирования я должен был бы написать:

Решение уравнений с интегралами i

После второго интегрирования:

Решение уравнений с интегралами i

Но вся фишка в том, что сумма/разность произвольных констант — это тоже некоторая константа! В нашем случае для окончательного ответа нам надо из первого интеграла вычесть второй. Тогда у нас получится разность двух промежуточных констант:

И мы имеем полное право эту самую разность констант заменить одной константой! И просто переобозначить её привычной нам буквой «С». Вот так:

Вот и приписываем эту самую константу С к окончательному результату и получаем ответ:

Решение уравнений с интегралами i

Да-да, дроби они такие! Многоэтажные логарифмы при их интегрировании — самое обычное дело. Тоже привыкаем.)

Запоминаем:

При промежуточном интегрировании нескольких слагаемых константу С после каждого из них можно не писать. Достаточно включить её в окончательный ответ всего примера. В самом конце.

Следующий пример тоже с дробью. Для разминки.)

Пример 5

Решение уравнений с интегралами i

В таблице, понятное дело, такой функции нет. Но зато есть похожая функция:

Решение уравнений с интегралами i

Это самая последняя, восьмая формула. С арктангенсом. 🙂

Решение уравнений с интегралами i

И нам сам бог велел подстроить наш интеграл под эту формулу! Но есть одна проблемка: в табличной формуле перед х 2 никакого коэффициента нету, а у нас — девятка. Не можем пока что напрямую воспользоваться формулой. Но в нашем случае проблема вполне решаема. Вынесем эту девятку сначала за скобки, а потом вообще уведём за пределы нашей дроби.)

Решение уравнений с интегралами i

А новая дробь — уже нужная нам табличная функция под номером 8! Здесь а 2 =4/9. Или а=2/3.

Всё. Выносим 1/9 за знак интеграла и пользуемся восьмой формулой:

Решение уравнений с интегралами i

Вот такой ответ. Этот пример, с коэффициентом перед х 2 , я специально так подобрал. Чтобы ясно было, что делать в таких случаях. 🙂 Если перед х 2 никакого коэффициента нет, то такие дроби тоже будут в уме интегрироваться.

Решение уравнений с интегралами i

Здесь а 2 = 5, поэтому само «а» будет «корень из пяти». В общем, вы поняли.)

А теперь немного видоизменим нашу функцию: напишем знаменатель под корнем.) Вот такой интеграл теперь будем брать:

Пример 6

Решение уравнений с интегралами i

В знаменателе появился корень. Естественно, изменилась и соответствующая формула для интегрирования, да.) Опять лезем в таблицу и ищем подходящую. Корни у нас есть в формулах 5-й и 6-й групп. Но в шестой группе под корнями только разность. А у нас — сумма. Значит, работаем по пятой формуле, с «длинным» логарифмом:

Решение уравнений с интегралами i

Число А у нас — пятёрка. Подставляем в формулу и получаем:

Решение уравнений с интегралами i

И все дела. Это ответ. Да-да, так просто!)

Если закрадываются сомнения, то всегда можно (и нужно) проверить результат обратным дифференцированием. Проверим? А то вдруг, лажа какая-нибудь?

Дифференцируем (на модуль внимания не обращаем и воспринимаем его как обычные скобки):

Решение уравнений с интегралами i

Решение уравнений с интегралами i

Решение уравнений с интегралами i

Кстати, если в подынтегральной функции под корнем поменять знак с плюса на минус, то формула для интегрирования останется той же самой. Не случайно в таблице под корнем стоит плюс/минус. 🙂

Решение уравнений с интегралами i

Важно! В случае минуса, на первом месте под корнем должно стоять именно х 2 , а на второмчисло. Если же под корнем всё наоборот, то и соответствующая табличная формула будет уже другая!

Пример 7

Решение уравнений с интегралами i

Под корнем снова минус, но х 2 с пятёркой поменялись местами. Похоже, но не одно и то же… На этот случай в нашей таблице тоже есть формулка.) Формула номер шесть, с ней мы ещё не работали:

Решение уравнений с интегралами i

А вот теперь — аккуратно. В предыдущем примере у нас пятёрка выступала в роли числа A. Здесь же пятёрка будет выступать уже в роли числа а 2 !

Поэтому для правильного применения формулы не забываем извлечь корень из пятёрки:

Решение уравнений с интегралами i

И теперь пример решается в одно действие. 🙂

Решение уравнений с интегралами i

Вот так вот! Всего лишь поменялись местами слагаемые под корнем, а результат интегрирования изменился существенно! Логарифм и арксинус… Так что, пожалуйста, не путайте эти две формулы! Хотя подынтегральные функции и очень похожи…

В табличных формулах 7-8 перед логарифмом и арктангенсом присутствуют коэффициенты 1/(2а) и 1/а соответственно. И в тревожной боевой обстановке при записи этих формул даже закалённые учёбой ботаны частенько путаются, где просто 1/а, а где 1/(2а). Вот вам простой приёмчик для запоминания.

Решение уравнений с интегралами i

в знаменателе подынтегральной функции стоит разность квадратов х 2 — а 2 . Которая, согласно боянной школьной формуле, раскладывается как (х-а)(х+а). На два множителя. Ключевое слово — два. И эти две скобки при интегрировании идут в логарифм: с минусом вверх, с плюсом — вниз.) И коэффициент перед логарифмом тоже 1/(2а).

А вот в формуле №8

Решение уравнений с интегралами i

в знаменателе дроби стоит сумма квадратов. Но сумма квадратов x 2 +a 2 неразложима на более простые множители. Поэтому, как ни крути, в знаменателе так и останется один множитель. И коэффициент перед арктангенсом тоже будет 1/а.

А теперь для разнообразия проинтегрируем что-нибудь из тригонометрии.)

Пример 8

Решение уравнений с интегралами i

Пример простой. Настолько простой, что народ, даже не глядя в таблицу, тут же радостно ответ пишет и… приехали. 🙂

Решение уравнений с интегралами i

Следим за знаками! Это самая распространённая ошибка при интегрировании синусов/косинусов. Не путаем с производными!

Но!

Решение уравнений с интегралами i

Поскольку производные народ обычно худо-бедно помнит, то, чтобы не путаться в знаках, приём для запоминания интегралов тут очень простой:

Интеграл от синуса/косинуса = минус производная от тех же синуса/косинуса.

Например, мы ещё со школы знаем, что производная синуса равна косинусу:

Тогда для интеграла от того же синуса будет справедливо:

Решение уравнений с интегралами i

И всё.) С косинусом то же самое.

Исправляем теперь наш пример:

Решение уравнений с интегралами i

Предварительные элементарные преобразования подынтегральной функции

До этого момента были самые простенькие примеры. Чтобы прочувствовать, как работает таблица и не ошибаться в выборе формулы.)

Конечно, мы делали кое-какие простенькие преобразования — множители выносили, на слагаемые разбивали. Но ответ всё равно так или иначе лежал на поверхности.) Однако… Если бы вычисление интегралов ограничивалось только прямым применением таблицы, то вокруг была бы сплошная халява и жить стало бы скучно.)

А теперь разберём примеры посолиднее. Такие, где впрямую, вроде бы, ничего и не решается. Но стоит вспомнить буквально пару-тройку элементарных школьных формул или преобразований, как дорога к ответу становится простой и понятной. 🙂

Продолжим развлекаться с тригонометрией.

Пример 9

Решение уравнений с интегралами i

Такой функции в таблице и близко нет. Зато в школьной тригонометрии есть такое малоизвестное тождество:

Решение уравнений с интегралами i

Выражаем теперь из него нужный нам квадрат тангенса и вставляем под интеграл:

Решение уравнений с интегралами i

Зачем это сделано? А затем, что после такого преобразования наш интеграл сведётся к двум табличным и будет браться в уме!

Решение уравнений с интегралами i

А теперь проанализируем наши действия. На первый взгляд, вроде бы, всё проще простого. Но давайте задумаемся вот над чем. Если бы перед нами стояла задача продифференцировать ту же самую функцию, то мы бы точно знали, что именно надо делать — применять формулу производной сложной функции:

Решение уравнений с интегралами i

И всё. Простая и безотказная технология. Работает всегда и гарантированно приводит к успеху.

А что же с интегралом? А вот тут нам пришлось порыться в тригонометрии, откопать какую-то малопонятную формулу в надежде, что она нам как-то поможет выкрутиться и свести интеграл к табличному. И не факт, что помогла бы она нам, совсем не факт… Именно поэтому интегрирование — более творческий процесс, нежели дифференцирование. Искусство, я бы даже сказал. 🙂 И это ещё не самый сложный пример. То ли ещё будет!

Пример 10

Решение уравнений с интегралами i

Что, внушает? Таблица интегралов пока бессильна, да. Но, если снова заглянуть в нашу сокровищницу тригонометрических формул, то можно откопать весьма и весьма полезную формулу косинуса двойного угла:

Решение уравнений с интегралами i

Вот и применяем эту формулу к нашей подынтегральной функции. В роли «альфа» у нас х/2.

Решение уравнений с интегралами i

Эффект потрясающий, правда?

Эти два примера наглядно показывают, что предварительное преобразование функции перед интегрированием вполне допускается и порой колоссально облегчает жизнь! И в интегрировании эта процедура (преобразование подынтегральной функции) на порядок более оправдана, чем при дифференцировании. В дальнейшем всё увидите.)

Разберём ещё парочку типовых преобразований.

Формулы сокращённого умножения, раскрытие скобок, приведение подобных и метод почленного деления.

Обычные банальные школьные преобразования. Но порой только они и спасают, да.)

Пример 11

Решение уравнений с интегралами i

Если бы мы считали производную, то никаких проблем: формула производной произведения и — вперёд. Но стандартной формулы для интеграла от произведения не существует. И единственный выход здесь — раскрыть все скобки, чтобы под интегралом получился многочлен. А уж многочлен мы как-нибудь проинтегрируем.) Но скобки раскрывать тоже будем с умом: формулы сокращённого умножения — штука мощная!

(x 2 — 1) 2 (x 2 + 1) 2 = ((x 2 — 1)(x 2 + 1)) 2 = ((x 2 ) 2 — 1 2 ) 2 = (x 4 — 1) 2 = x 8 — 2x 4 + 1

А теперь считаем:

Решение уравнений с интегралами i

Пример 12

Решение уравнений с интегралами i

Опять же, стандартной формулы для интеграла от дроби не существует. Однако в знаменателе подынтегральной дроби стоит одинокий икс. Это в корне меняет ситуацию.) Поделим почленно числитель на знаменатель, сведя нашу жуткую дробь к безобидной сумме табличных степенных функций:

Решение уравнений с интегралами i

Особо комментировать процедуру интегрирования степеней не буду: не маленькие уже.)

Интегрируем сумму степенных функций. По табличке.)

Решение уравнений с интегралами i

Вот и все дела.) Кстати, если бы в знаменателе сидел не икс, а, скажем, х+1, вот так:

Решение уравнений с интегралами i

то этот фокус с почленным делением уже так просто не прошёл бы. Именно из-за наличия корня в числителе и единицы в знаменателе. Пришлось бы замену вводить и избавляться от корня. Но такие интегралы гораздо сложнее. О них — в других уроках.

Видите! Стоит только чуть-чуть видоизменить функцию — тут же меняется и подход к её интегрированию. Порой кардинально!) Нету чёткой стандартной схемы. К каждой функции — свой подход. Иногда даже уникальный.)

В некоторых случаях преобразования в дробях ещё более хитрые.

Пример 13

Решение уравнений с интегралами i

А здесь как можно свести интеграл к набору табличных? Здесь можно ловко извернуться добавлением и вычитанием выражения x 2 в числителе дроби с последующим почленным делением. Очень искусный приём в интегралах! Смотрите мастер-класс! 🙂

Решение уравнений с интегралами i

И теперь, если заменить исходную дробь на разность двух дробей, то наш интеграл распадается на два табличных — уже знакомую нам степенную функцию и арктангенс (формула 8):

Решение уравнений с интегралами i

Ну, что тут можно сказать? Вау!

Этот трюк с добавлением/вычитанием слагаемых в числителе — очень популярен в интегрировании рациональных дробей. Очень! Рекомендую взять на заметку.

Пример 14

Решение уравнений с интегралами i

Здесь тоже рулит эта же технология. Только добавлять/вычитать надо единичку, чтобы из числителя выделить выражение, стоящее в знаменателе:

Решение уравнений с интегралами i

Вообще говоря, рациональные дроби (с многочленами в числителе и знаменателе) — отдельная очень обширная тема. Дело всё в том, что рациональные дроби — один из очень немногих классов функций, для которых универсальный способ интегрирования существует. Метод разложения на простейшие дроби вкупе с методом неопределённых коэффициентов. Но способ этот очень трудоёмкий и обычно применяется как тяжёлая артиллерия. Ему будет посвящён не один урок. А пока что тренируемся и набиваем руку на простых функциях.

Подытожим сегодняшний урок.

Сегодня мы подробно рассмотрели, как именно пользоваться таблицей, со всеми нюансами, разобрали множество примеров (и не самых тривиальных) и познакомились с простейшими приёмами сведения интегралов к табличным. И так мы теперь будем поступать всегда. Какая бы страшная функция ни стояла под интегралом, с помощью самых разнообразных преобразований мы будем добиваться того, чтобы, рано или поздно, наш интеграл, так или иначе, свёлся к набору табличных.

Несколько практических советов.

1) Если под интегралом дробь, в числителе которой сумма степеней (корней), а в знаменателе — одинокая степень икса, то используем почленное деление числителя на знаменатель. Заменяем корни степенями с дробными показателями и работаем по формулам 1-2.

2) В тригонометрических конструкциях в первую очередь пробуем базовые формулы тригонометрии — двойного/тройного угла, основные тригонометрические тождества:

Решение уравнений с интегралами i

Может очень крупно повезти. А может и нет…

3) Где нужно (особенно в многочленах и дробях), применяем формулы сокращённого умножения:

(a+b) 2 = a 2 +2ab+b 2

4) При интегрировании дробей с многочленами пробуем искусственно выделить в числителе выражение(я), стоящее(щие) в знаменателе. Очень часто дробь упрощается и интеграл сводится к комбинации табличных.

Ну что, друзья? Я вижу, интегралы вам начинают нравиться. 🙂 Тогда набиваем руку и решаем примеры самостоятельно.) Сегодняшнего материала вполне достаточно, чтобы успешно с ними справиться.

Решение уравнений с интегралами i

Что? Не знаете, как интегрировать арксинус/арккосинус ? Да! Мы этого ещё не проходили.) Но здесь их напрямую интегрировать и не нужно. И да поможет вам школьный курс!)

Ответы (в беспорядке):

Решение уравнений с интегралами i

Для лучших результатов настоятельно рекомендую приобрести сборник задач по матану Г.Н. Бермана. Классная штука!

🎥 Видео

Примеры решения определенных интеграловСкачать

Примеры решения определенных интегралов

11. Уравнения в полных дифференциалахСкачать

11. Уравнения в полных дифференциалах

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Математика без Ху!ни. Определенные интегралы, часть 1.Скачать

Математика без Ху!ни. Определенные интегралы, часть 1.

ИНТЕГРАЛ С НУЛЯ | определенный интеграл | ТАБЛИЦА ИНТЕГРАЛОВ | сумма РиманаСкачать

ИНТЕГРАЛ С НУЛЯ | определенный интеграл | ТАБЛИЦА ИНТЕГРАЛОВ | сумма Римана

Неопределенный интеграл. Примеры решений интегралов. Часть 1 | Высшая математика TutorOnlineСкачать

Неопределенный интеграл. Примеры решений интегралов. Часть 1 | Высшая математика TutorOnline

Интеграл: Азы интегрирования. Высшая математикаСкачать

Интеграл: Азы интегрирования. Высшая математика

Математика без Ху!ни. Метод неопределенных коэффициентов.Скачать

Математика без Ху!ни. Метод неопределенных коэффициентов.

Определенный интеграл примеры решенияСкачать

Определенный интеграл примеры решения

Математика это не ИсламСкачать

Математика это не Ислам

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.

Найдем интеграл через дифференциальное уравнение!Скачать

Найдем интеграл через дифференциальное уравнение!

Определенные и неопределенные интегралы для чайников. Свойства интегралов.Скачать

Определенные и неопределенные интегралы для чайников. Свойства интегралов.

4.1 Метод интегрирования по частям. Часть 1Скачать

4.1 Метод интегрирования по частям. Часть 1

Частное решение дифференциального уравнения. 11 класс.Скачать

Частное решение дифференциального уравнения. 11 класс.
Поделиться или сохранить к себе: