Решение уравнений с функцией solve

Видео:Ключевое слово solve в MathCAD 14 (26/34)Скачать

Ключевое слово solve в MathCAD 14 (26/34)

Решение уравнений и их систем – команда solve

Дата добавления: 2015-06-12 ; просмотров: 5224 ; Нарушение авторских прав

Для решения систем уравнений и одиночных уравнений служит команда

solve(expr1, expr2. exprN, var1, var2. varN). Она возвращает значения переменных varI, при которых соблюдаются равенства, заданные выражениями exprI. Если в выражениях не используются знаки равенства, то полагается, что exprI = 0.

Результат может быть возвращен в следующих формах:

для одного уравнения и одной переменной решение возвращается в виде одномерного или многомерного массива ячеек;

при одинаковом числе уравнений и переменных решение возвращается в упорядоченном по именам переменных виде.

Команда solve позволяет найти не только вещественные, но и комплексные решения систем уравнений и одиночных уравнений. Справку по этой команде можно получить, введя команду doc solve.

Решить уравнение x 3 — 1 = 0.

В результате получены три разных значения корня x1 = 1, x2 = , x3 = , которые хранятся соответственно в элементах S(1), S(2), S(3) массива S.

С помощью subs (разд. 7.7) подставим найденные значения корней в выражение x 3 — 1:

Выражение x 3 — 1 принимает значение 0 при подстановке любого из найденных корней, поэтому x1, x2, x3 являются точными корнями уравнения x 3 — 1 = 0.

Команда roots (см. разд. 6.1) нашла бы только приближенные значения корней уравнения x 3 — 1 = 0. В общем случае полиномиальное уравнение степени выше 4 не может иметь точного решения, выраженного с помощью радикалов.

Команда solve позволяет решать уравнения, представленные в аналитическом виде.

Решить квадратное уравнение ax 2 +bx+c = 0.

Команда solve возвратила известные выражения корней x1,2 = квадратного уравнения ax 2 +bx+c = 0. Точно также можно выразить с помощью радикалов решения кубического уравнения ax 3 +bx 2 +cx+d = 0, хотя эти выражения достаточно сложные.

Решить трансцендентное уравнение x lnx +1 — 1 = 0.

В данном случае solve нашла точные значения корней x1 = 1, x2 = e −1 .

Решить трансцендентное уравнение lnx + 3 — x = 0.

Команда solve возвратила значения корней, выраженные через функцию Ламберта.

Команда vpa возвращает приближенные значения этих корней, вычисленные с 20 значащими цифрами:

Каждый из приближенных корней этого уравнения был найден по отдельности в разделе 6.2 с помощью команды fzero. Отметим, что команда solve нашла приближенные значения двух корней одновременно с высокой точностью. При этом не пришлось графически определять интервалы изоляции корней.

Решение любого трансцендентного уравнения, в том числе и тригонометрического (разд. 7.17), достаточно сложная и серьезная проблема. Иногда solve возвращает неверные решения.

Решить трансцендентное уравнение sinx lnsinx +x x — 2 = 0.

Найденное решение неверное, т. к. оно не прошло проверку подстановкой.

Команда solve может возвратить не все решения.

Решить трансцендентное уравнение sinx+lnx+e x — 1 = 0.

Возвратив приближенный комплексный корень уравнения x1 = -3,0553 — 1,7145i, solve не нашла вещественный корень. С помощью команды ezplot (разд. 7.16) графически определяем, что он находится вблизи значения 0,4 (рис. 7.2):

Решение уравнений с функцией solve

Вещественный корень со стартовым приближением 0,4 найдем с помощью команды fzero(разд. 6.2):

Итак, приближенное значение вещественного корня x2=0,4072.

Перейдем теперь к системам уравнений.

Решить систему уравнений

Решение уравнений с функцией solve

Результатом выполнения команды solve является структура S с полями x и y, каждое из которых содержит символьное представление решения:

Выведем в командное окно содержимое структуры:

Для проверки подставим в выражения Y1 = x+y — 3 и Y2 = xy 2 — 4 вначале первое решение, а затем второе:

>> disp(subs([Y1 Y2],[x y],[S.x(1) S.y(1)])

>> disp(subs([Y1 Y2],[x y],[S.x(2) S.y(2)])

Как видим, найдены точные решения, т. к. выражения Y1 и Y2 при их подстановке обратились в 0.

Команда solve допускает использование символьных переменных в качестве выходных аргументов. Эквивалентное обращение к solve в предыдущем примере имеет вид:

Команда solve позволяет решать системы уравнений, заданные в аналитическом виде.

Решить систему уравнений относительно x, y, z

Видео:MatLab. 9.5f. Функция решения алгебраических уравнений – solveСкачать

MatLab. 9.5f. Функция решения алгебраических уравнений – solve

Базовая алгебра и вычисления¶

Sage может осуществлять вычисления такие, как поиск решений уравнений, дифференцирование, интегрирование и преобразования Лапласа. См. Sage Constructions , где содержатся примеры.

Видео:7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Решение уравнений¶

Точное решение уравнений¶

Функция solve решает уравнения. Для ее использования сначала нужно определить некоторые переменные; аргументами для solve будут уравнение (или система уравнений) и переменные, для которых нужно найти решение:

Можно решать уравнения для одной переменной через другие:

Также можно решать уравнения с несколькими переменными:

Следующий пример показывает, как Sage решает систему нелинейных уравнений. Для начала система решается символьно:

Для приближенных значений решения можно использовать:

(Функция n выведет приближенное значение. Аргументом для данной функции является количество битов точности)

Численное решение уравнений¶

Во многих случаях функция solve не способна найти точное решение уравнения. Вместо нее можно использовать функцию find_root для нахождения численного решения. Например, solve не возвращает ничего существенного для следующего уравнения:

С другой стороны функция find_root может использоваться для решения вышеуказанного примера в интервале (0 :

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Дифференцирование, интегрирование и т.д.¶

Sage умеет дифференцировать и интегрировать многие функции. Например, для того, чтобы продифференцировать (sin(u)) по переменной (u) , требуется:

Для подсчета четвертой производной функции (sin(x^2)) надо:

Для нахождения частных производных, как, например, для функции (x^2+17y^2) по (x) и (y) соответственно:

Теперь найдём интегралы: и определенные, и неопределенные. Например, (int xsin(x^2), dx) и (int_0^1 frac, dx)

Для нахождения разложения на простые дроби для (frac) нужно сделать следующее:

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Решение дифференциальных уравнений¶

Sage может использоваться для решения дифференциальных уравнений. Для решения уравнения (x’+x-1=0) сделаем следующее:

Для этого используется интерфейс Maxima [Max] , поэтому результат может быть выведен в виде, отличном от обычного вывода Sage. В данном случае общее решение для данного дифференциального уравнения — (x(t) = e^(e^+C)) .

Преобразования Лапласа также могут быть вычислены. Преобразование Лапласа для (t^2e^t -sin(t)) вычисляется следующим образом:

Приведем более сложный пример. Отклонение от положения равновесия для пары пружин, прикрепленных к стене слева,

может быть представлено в виде дифференциальных уравнений второго порядка

где (m_) — это масса объекта i, (x_) — это отклонение от положения равновесия массы i, а (k_) — это константа для пружины i.

Пример: Используйте Sage для вышеуказанного примера с (m_=2) , (m_=1) , (k_=4) , (k_=2) , (x_(0)=3) , (x_'(0)=0) , (x_(0)=3) , (x_'(0)=0) .

Решение: Надо найти преобразование Лапласа первого уравнения (с условием (x=x_) , (y=x_) ):

Данный результат тяжело читаем, однако должен быть понят как

Найдем преобразование Лапласа для второго уравнения:

Вставим начальные условия для (x(0)) , (x'(0)) , (y(0)) и (y'(0)) , и решим уравения:

Теперь произведём обратное преобразование Лапласа для нахождения ответа:

График для ответа может быть построен параметрически, используя

Графики могут быть построены и для отдельных компонентов:

Для более исчерпывающей информации по графикам см. Построение графиков . Также см. секцию 5.5 из [NagleEtAl2004] для углубленной информации по дифференциальным уравнениям.

Видео:8 класс, 21 урок, Графическое решение уравненийСкачать

8 класс, 21 урок, Графическое решение уравнений

Метод Эйлера для решения систем дифференциальных уравнений¶

В следующем примере показан метод Эйлера для дифференциальных уравнений первого и второго порядков. Сначала вспомним, что делается для уравнений первого порядка. Дана задача с начальными условиями в виде

требуется найти приблизительное значение решения при (x=b) и (b>a) .

Из определения производной следует, что

где (h>0) дано и является небольшим. Это и дифференциальное уравнение дают (f(x,y(x))approx frac) . Теперь надо решить для (y(x+h)) :

Если назвать (hcdot f(x,y(x))) «поправочным элементом», (y(x)) «прежним значением (y) » а (y(x+h)) «новым значением (y) », тогда данное приближение может быть выражено в виде

Если разбить интервал между (a) и (b) на (n) частей, чтобы (h=frac) , тогда можно записать информацию для данного метода в таблицу.

Целью является заполнить все пустоты в таблице по одному ряду за раз до момента достижения записи . которая и является приближенным значением метода Эйлера для (y(b)) .

Решение систем дифференциальных уравнений похоже на решение обычных дифференциальных уравнений.

Пример: Найдите численное приблизительное значение для (z(t)) при (t=1) , используя 4 шага метода Эйлера, где (z»+tz’+z=0) , (z(0)=1) , (z'(0)=0) .

Требуется привести дифференциальное уравнение 2го порядка к системе двух дифференцальных уравнений первого порядка (используя (x=z) , (y=z’) ) и применить метод Эйлера:

Итак, (z(1)approx 0.75) .

Можно построить график для точек ((x,y)) , чтобы получить приблизительный вид кривой. Функция eulers_method_2x2_plot выполнит данную задачу; для этого надо определить функции f и g, аргумент которых имеет три координаты: ( (t) , (x) , (y) ).

В этот момент P содержит в себе два графика: P[0] — график (x) по (t) и P[1] — график (y) по (t) . Оба эти графика могут быть выведены следующим образом:

Видео:Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)

Специальные функции¶

Несколько ортогональных полиномов и специальных функций осуществлены с помощью PARI [GAP] и Maxima [Max] .

На данный момент Sage рассматривает данные функции только для численного применения. Для символьного использования нужно напрямую использовать интерфейс Maxima, как описано ниже:

Видео:решение уравнения графически (Graphical solution of quadratic equation )Скачать

решение уравнения графически (Graphical solution of quadratic equation )

Решение уравнений с функцией solve

Уравнения и системы уравнений

Многие математические задачи сводятся к решению в общем случае нелинейных уравнений вида f(x) = 0 или f(x) = expr.

В системе Mathematica они обозначаются как eqns (от слова equations — уравнения). Разумеется, могут решаться и системы, состоящие из ряда таких уравнений.

Для решения уравнений (как одиночных, так и систем) в численном и символьном виде Mathematica имеет функцию Solve:

  • Solve [eqns, vars] — предпринимает попытку решить уравнение или систему уравнений eqns относительно переменных vars;
  • Solve [eqns, vars, elims] — пытается решать уравнения eqns по переменным vars, исключая переменные elims.

Входные параметры этой функции могут быть представлены списками или записаны выражениями через объединительный знак«&&». В eqns в качестве знака равенства используется знак «= =». Примеры применения функции Solve представлены на рис. 4.12.

Решение уравнений с функцией solve

Рис. 4.12. Примеры решения уравнений

Обратите внимание на то, что в определенных ситуациях система подсказывает тонкости решения, выдавая предупреждающие сообщения. Если такие ситуации не являются ошибками, препятствующими решению, то полученное решение выводится в ячейку вывода.

Решение систем нелинейных уравнений в символьном виде

Приведенные на рис. 4.13 примеры показывают решение систем нелинейных уравнений с помощью функции Solve.

Достаточно характерен пример с применением функции N. Если убрать в нем функцию N, то будет получен чрезвычайно громоздкий, хотя и точный результат (проверьте это сами, поскольку размеры результата делают нецелесообразным его приведение в книге). Функция N осуществляет выполнение всех промежуточных вычислений, благодаря чему результат получается вполне обозримым и представленным в комплексных числах.

В последнем примере рис. 4.13 получен набор из пяти пар корней, определенных через функцию Root. Эта функция, в свою очередь, означает вычисление корней полиномиального уравнения пятой степени. Данный пример, как и ранее приводимые решения кубического уравнения, является наглядной иллюстрацией того, что простота нелинейных уравнений порой оказывается весьма обманчивой, а их решение порой приводит к весьма громоздким и сложным результатам. Тем не менее, возможность решения отдельных нелинейных уравнений и их систем в символьном виде трудно переоценить. К сожалению, далеко не все уравнения имеют такие решения — многие можно решать только в численном виде.

Решение уравнений с функцией solve

Рис. 4.13. Примеры решения систем нелинейных уравнений

Не следует полагать, что Mathematica всегда выдает верное решение систем нелинейных уравнений. На самом деле решение иногда бывает ошибочным. Поэтому в большинстве случаев стоит оформлять решение таким образом, чтобы обеспечить его проверку. Для этого рекомендуется отдельно задать систему уравнений и результат решения. Тогда проверка легко осуществляется с помощью подстановки. Два примера решения систем уравнений с проверкой решений показаны на рис. 4.14.

В первом примере решение кажется очевидным (равенства выполняются, например, при х=2 и у=3). Однако здесь Mathematica дает сразу три пары решений, и все они оказываются верны, поскольку после подстановки проверка всех равенств возвращает True.

А вот во втором примере проверка дала не совсем обычный результат, что связано с наличием в решении неопределенной переменной а. В таких случаях стоит попробовать упростить решение с помощью функции Simplify, что и показано на рис. 4.14.

Решение уравнений с функцией solve

Рис. 4.14. Примеры решения уравнений с проверкой

Опции функции Solve

С функцией Solve можно использовать ряд опций. Их можно вывести командой Options [Solve]. Ниже описано их назначение:

  • InverseFunctions — указывает, следует ли использовать обратные функции;
  • MakeRules — указывает, должен ли результат быть представлен как объект AlgebraicRulesData;
  • Method — устанавливает алгоритм, используемый для вычисления результата (возможны методы 1, 2 и 3);
  • Mode — задает характер решения уравнения (возможны Generic, Modular и Rational);
  • Sort — устанавливает, нужна ли сортировка результатов;
  • Verif ySolutions — устанавливает, следует ли проводить проверку полученных решений и удаление посторонних решений;
  • WorkingPrecision — устанавливает число цифр промежуточных вычислений (по умолчанию Infinity).

На рис. 4.15 приведены примеры применения функции Solve с опцией Inverse-Functions.

Обратите внимание на то, что последняя система уравнений при отсутствии опции InverseFunctions решается с предупреждением. Она вообще не решается, если эта опция задана как False, и гладко решается при InverseFunctions -> True.

Решение уравнений с функцией solve

Рис. 4.15. Примеры решения уравнений с опцией InverseFunction

То, насколько может влиять на решение опция Method, наглядно показывают примеры, представленные на рис. 4.16.

Решение уравнений с функцией solve

Рис. 4.16. Примеры решения уравнений разными методами

Множество примеров решения систем нелинейных уравнений в символьном виде можно найти в справочной системе Mathematica.

Численное решение уравнений

Многие нелинейные уравнения и системы нелинейных уравнений в принципе не имеют аналитических решений. Однако их решение вполне возможно численными методами. Для численного решения систем нелинейных уравнений используется функция NSolve:

  • NSolve [eqns, vars] — пытается численно решить одно уравнение или систему уравнений eqns относительно переменных vars;
  • NSolve [eqns, vars, elims] — пытается численно решить уравнения eqns относительно vars, исключая переменные elims.

С этой функцией используется единственная опция WorkingPrecision, задающая число верных цифр результата — по умолчанию 16. На рис. 4.17 представлены примеры использования функции NSolve для численного решения уравнений.

Решение уравнений с функцией solve

Риc. 4.17. Примеры численного решения уравнений

Результаты решения с помощью функции NSolve также рекомендуется проверять с помощью подстановки, например, так:

Нетрудно заметить, что в данном случае решение верно.

Поиск корней уравнений

Для вычисления корней полиномиальных уравнений используется функция Roots:

На рис. 4.18 представлены примеры применения функции Roots.

Решение уравнений с функцией solve

Рис. 4.18. Примеры использования функции Roots

Формат выдачи результатов для функции Roots отличается от такового для функции Solve. Поэтому проверку решения подстановкой надо выполнять как в следующем примере:

х == -3.56155 | | х == 0.561553

Для преобразования результата вычислений в список решений (подобный решениям, получаемым с помощью функции Solve) здесь использована функция ToRules.

При затруднениях в решении уравнений с помощью функции Roots можно использовать следующие опции:

True, Eliminate -> False, EquatedTo-> Null,

Modulus -> 0, Multiplicity->1, Quar tics -> True, Using -> True>

Ниже они описаны подробно:

  • Cubics — указывает, следует ли искать явные решения для неприводимых кубических уравнений;
  • EquatedTo — задает выражение для замещения переменной в решении;
  • Modulus — задает промежуточную факторизацию полинома;
  • Multiplicity— устанавливает кратность каждого из корней в конечном результате;
  • Quartics — задает точное решение квадратного уравнения и полинома четвертой степени;
  • Using — указывает какие-либо дополнительные уравнения, которые следует использовать для решения уравнений.

Применение опций нередко позволяет получать решения, которые не удаются с первого раза. Однако это требует определенного опыта и понимания сути решаемой задачи.

Дополнительные функции для решения уравнений

Имеется также ряд дополнительных функций, которые используются описанными ранее функциями и также могут применяться при решении нелинейных уравнений:

  • Auxiliary [v] — применяется модулем Solve для указания того, что переменная v должна использоваться функцией Roots для результирующих решений, но соответствующие значения v не должны быть включены в окончательный ответ;
  • Eliminate [eqns, vars] — исключает переменные vars из системы уравнений eqns;
  • FindRoot [Ihs == rhs, ] — ищет численное решение уравнения Ihs == rhs, начиная с х = x0;
  • MainSolve [eqns] — основная функция для преобразования системы уравнений. Ее вызывают Solve и Eliminate. Уравнения должны быть представлены в форме Ihs == rhs. Они могут объединяться с помощью && и | |. MainSolve возвращает False, если не существует решения уравнений, и возвращает True, если все значения переменных являются решениями. MainSolve перестраивает уравнения, применяя определенные директивы;
  • MainSolve [eqns, vars, elim, rest] — пытается перестраивать уравнения eqns так, чтобы найти решения для переменных vars и исключить переменные elim. Список rest может включаться для указания порядка исключения любых остальных переменных;
  • NRoots [lhs==rhs, var] — возвращает список численных приближений корней полиномиального уравнения;
  • Residue [ехрr, ] — ищет вычет ехрг в точке х = х0;
  • SolveAlways [eqns, vars] — возвращает значения параметров, которые превращают уравнения eqns в тождества для всех значений переменных vars.

Примеры использования некоторых из этих функций показаны на рис. 4.19.

Решение уравнений с функцией solve

Рис. 4.19. Примеры применения дополнительных функций для решения уравнений

В целом надо отметить, что система Mathematica обладает обширными средствами для решения уравнений и их систем. Умение их применять — залог правильного и эффективного решения сложных математических задач, относящихся к классу решения уравнений.

Графическая иллюстрация и выбор метода решения уравнений

При рассмотрении приведенных выше примеров может сложиться благодушное впечатление о том, что решение нелинейных уравнений может производиться автоматически и без размышлений. Но это далеко не так — представленные выше примеры просто подобраны так, что они имеют решение с помощью соответствующих функций.

На самом деле порой даже простые уравнения могут не иметь решения. В сложных случаях очень полезна графическая визуализация решения. В качестве примера на рис. 4.20 показана визуализация вычисления корней квадратного уравнения. В данном случае график функции явно указывает на существование двух действительных корней при х, близких к 0.2 и 2.3. Функция Nsolve без труда находит оба корня.

Решение уравнений с функцией solve

Рис. 4.20. Визуализация решения квадратного уравнения для случая двух действительных корней

А вот на рис. 4.21 показан случай, когда из-за изменения последнего члена квадратичной функции ее график уже не пересекает ось х вообще. Это говорит о том, что решения в виде действительных корней нет. И в самом деле, NSolve находит корни как комплексно-сопряженные числа. Действительная часть найденных корней дает координату х для впадины кривой — параболы.

Если требуется решение равенства f1(х) = f 2 (x), то для графической визуализации решения можно построить графики функций f1(х) и f 2 (лг) — наличие точек их пересечения будет означать существование действительных корней. Этот случай иллюстрирует рис. 4.22. В данном случае проблем с решением нет, поскольку, по существу, решается квадратное уравнение.

Решение уравнений с функцией solve

Рис. 4.21. Визуализация решения квадратного уравнения для случая двух комплексных корней

Решение уравнений с функцией solve

Рис. 4.22. Пример визуализации решения уравнения вида f(x) = 5х + 1

Но вот на рис. 4.23 показан случай решения уравнения f(x) = ехр(х/2). Графики функций ясно показывают, что парабола пересекается экспонентой в двух точках. Однако функция NSolve отказывается решать такое уравнение и выдает сообщение о том, что оно является трансцендентным.

Таким образом, в данном случае наличие графического решения говорит о необходимости смены функции, с помощью которой до сих пор решались уравнения. Подходящей в данном случае является функция FindRoot, которая отыскивает одно решение вблизи заданной начальной точки. Применив ее дважды, нетрудно получить оба корня данного уравнения.

Решение уравнений с функцией solve

Рис. 4.23. Пример решения уравнения вида f(x) = ехр(х/2)

Приведенные примеры далеко не исчерпывают проблему графической визуализации решения и выбора методов решения. Однако они иллюстрируют возможности системы Mathematica в этой области и заостряют внимание на потенциальных проблемах. Для реализации численных расчетов в системе Mathematica отобраны наилучшие и наиболее эффективные численные методы из описанных в литературе, в том числе в отечественной.

Получение сразу нескольких корней

Многие уравнения с тригонометрическими функциями могут иметь периодические или близкие к ним решения. К сожалению, функции Mathematica, вычисляющие корни уравнений, не способны в этом случае дать сразу несколько корней. Однако ситуация тут далеко не безнадежна — приведенный ниже пример наглядно показывает это.

Пусть требуется в интервале изменения х от 0 до 20 найти все решения уравнения

График функции, представляющей левую часть уравнения, показан на рис. 4.24. Хорошо видно, что он пересекает ось х семь раз, то есть имеет в интересующем нас диапазоне семь корней.

Решение уравнений с функцией solve

Рис. 4.24. График функции х sin(x) + х/2 — 1 и пример вычисления всех ее корней в интервале изменения х от 0 до 20

Колебательная составляющая функции обусловлена входящей в нее функцией sin(x), которая имеет нули в точках 0, n, 2n, Зn. Однако, как видно из рис. 4.24, эти значения лишь приближенные, ввиду влияния других членов уравнения.

Ключевая идея получения всех корней уравнения заключается в поиске нужных решений с помощью функции FindRoot, которой последовательно подставляются различные начальные приближения. Однако вместо уже испытанного приема — поиска корней поодиночке — можно воспользоваться «таблицей» решений, используя функцию Table. Решение, приведенное под графиком функции на рис. 4.24, наглядно иллюстрирует возможности этого приема — найдены (или, вернее, уточнены) все семь корней исходного уравнения.

Получение неизвестных в явном виде

Читатель, возможно, обратил внимание на то, что решения всех представленных выше примеров выглядят не совсем обычно — в виде списка подстановок. Это не позволяет использовать неизвестные в явном виде, например, для проверки решений или передачи найденных неизвестных в последующие вычислительные блоки. Однако от этого затруднения легко избавиться, если перед конструкций блока решения использовать выражение следующего вида:

Список переменных в этом выражении должен однозначно соответствовать списку неизвестных системы уравнений. Покажем этот прием в действии. Ниже приведено решение системы из трех нелинейных уравнений:

Обратите внимание на то, что вывод списка не дает полученных значений неизвестных. Это связано с тем, что переменные в блоке решения имеют ло-к(1лъный характер и за пределами блока их значения (в том числе неопределенные) сохранятся такими, какими они были до применения в блоке решения.

Теперь зададим решение в ином виде:

Как видите, на сей раз решение получено в виде списка с числами — явными значениями неизвестных. Можно обозначить их как а, Ь и с, получить список и даже использовать их отдельно:

Теперь можно проверить решение данной системы:

Полученный вектор правых частей системы совпадает с заданным, что свидетельствует о правильности решения. Разумеется, вместо нового списка для вектора решения можно было использовать и вектор .

💥 Видео

А вы решите уравнение? Solve the equation | МатематикаСкачать

А вы решите уравнение? Solve the equation | Математика

Функция SOLVE.Обучающее видеоСкачать

Функция SOLVE.Обучающее видео

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Mathcad-09. Пример: уравненияСкачать

Mathcad-09. Пример: уравнения

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Средство для решения систем уравнений в MathCAD 14 (29/34)Скачать

Средство для решения систем уравнений в MathCAD 14 (29/34)

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Графический метод решения уравнений 8 классСкачать

Графический метод решения уравнений   8 класс

Графический метод решения задачи линейного программирования (ЗЛП)Скачать

Графический метод решения задачи линейного программирования (ЗЛП)

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Casio fx-9860 SOLVE решение любых уравнений на графическом калькулятореСкачать

Casio fx-9860 SOLVE решение любых уравнений на графическом калькуляторе
Поделиться или сохранить к себе: