Решение уравнений с двумя переменными и комплексными числами

Решение уравнений с двумя переменными и комплексными числами

. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i — это комплексная единица (после того как ввели уравнение и нажали кнопку «решить»), нажимаете кнопку под формой «Обновить» и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке

Решение уравнений с двумя переменными и комплексными числами

© Контрольная работа РУ — примеры решения задач

Видео:Уравнение с комплексными числамиСкачать

Уравнение с комплексными числами

Примеры действий с комплексными числами, решение уравнений

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

Решение уравнений с комплексными числами

Задача 1 . Решите уравнение (2 − i) x + (5 + 6i) у = 1 − 3i

относительно действительных переменных х и у.

Решение. Левую часть уравнения можно рассматривать, как некоторое неизвестное комплексное число. Приведя его к виду a + bi получаем уравнение, равносильное данному:

(2х + 5у ) + (− х + 6у ) i = 1 − 3i .

Так как два комплексных числа равны тогда и только тогда, когда равны их действительные и мнимые части, приходим к системе:

Решение уравнений с двумя переменными и комплексными числами

Решая эту систему, получаем : х = Решение уравнений с двумя переменными и комплексными числами; у = Решение уравнений с двумя переменными и комплексными числами.

Ответ: х = Решение уравнений с двумя переменными и комплексными числами; у = Решение уравнений с двумя переменными и комплексными числами; .

Задача 2 . При каких действительных значениях х и у

комплексные числа z1 = x2 + yi − 5 − и z2 = –у – х2 i – 4i будут сопряженными?

Решение. Комплексные числа z1 = (х2 — 5) + (у + 7i) и z2 = (–у) – (х + 4)i будут комплексно сопряженными, если выполняются условия :

Решение уравнений с двумя переменными и комплексными числами

Решая полученную систему, находим: х1 = 2 , у1 = 1 ; х2 = −2 , у2 = 1 .

Задача 3. При каких действительных значениях х и у комплексные числа:

z1 = 2×2 – yi −1− и z2 = у –3 + х2i – 2i будут равными?

Решение. Комплексные числа z1= (2х2 –1)+ (3 – y)i, z2 = (у–3) + (х2–2)i будут равными, если выполняются условия: Решение уравнений с двумя переменными и комплексными числами

Решая систему, находим: х1 = −1 , у1 = 4 ; х2 = 1 , у2 = 4 .

Видео:Комплексные корни квадратного уравненияСкачать

Комплексные корни квадратного уравнения

Решение уравнений с комплексными числами

Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.

Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:

Решение уравнений с двумя переменными и комплексными числами
где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = .

Пример 1. Найти все корни уравнения

Решение уравнений с двумя переменными и комплексными числами

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа

Решение уравнений с двумя переменными и комплексными числами

Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:

Решение уравнений с двумя переменными и комплексными числамиРешение уравнений с двумя переменными и комплексными числами
Подставим найденные значения в формулу:

Решение уравнений с двумя переменными и комплексными числами

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.

Решение уравнений с двумя переменными и комплексными числами

Пример 2. Найти все корни уравнения

Решение уравнений с двумя переменными и комплексными числами

Найдем дискриминант уравнения:

Решение уравнений с двумя переменными и комплексными числами
Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:

Решение уравнений с двумя переменными и комплексными числами

Найдем корни уравнения:

Решение уравнений с двумя переменными и комплексными числами
Ответ:

Решение уравнений с двумя переменными и комплексными числами

Пример 3. Найти все корни уравнения

Решение уравнений с двумя переменными и комплексными числами

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа

Решение уравнений с двумя переменными и комплексными числами

Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = . Найдем модуль комплексного числа:

Решение уравнений с двумя переменными и комплексными числами

Подставим найденные значения в формулу:

Решение уравнений с двумя переменными и комплексными числами

Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:

Решение уравнений с двумя переменными и комплексными числами

Решение уравнений с двумя переменными и комплексными числами

Пример 4. Найти корни уравнения

Решение уравнений с двумя переменными и комплексными числами
Решение кубического уравнения комплексными числами:

Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.

Найдем все необходимые значения для формулы:

Решение уравнений с двумя переменными и комплексными числами
Подставим найденные значения в формулу:

Решение уравнений с двумя переменными и комплексными числами

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:

Решение уравнений с двумя переменными и комплексными числами

Решение уравнений с двумя переменными и комплексными числами

Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.

Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.

После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.

Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.

Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.

Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.

Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.

📹 Видео

Комплексные числа в уравненияхСкачать

Комплексные числа в уравнениях

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.

Решение квадратных уравнений в поле комплексных чиселСкачать

Решение квадратных уравнений в поле комплексных чисел

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

Комплексные корни квадратных уравнений. 11 класс.Скачать

Комплексные корни квадратных уравнений. 11 класс.

комплЕксные ЧИСЛА решение примеров МАТЕМАТИКАСкачать

комплЕксные ЧИСЛА решение примеров МАТЕМАТИКА

Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать

Уравнение с двумя переменными и его график. Алгебра, 9 класс

10 класс, 35 урок, Комплексные числа и квадратные уравненияСкачать

10 класс, 35 урок, Комплексные числа и квадратные уравнения

Как решать уравнения с двумя переменными в целых числах! Лёгкий способ!Скачать

Как решать уравнения с двумя переменными в целых числах! Лёгкий способ!

Решение уравнений с комплексными числамиСкачать

Решение уравнений с комплексными числами

Алгебра 9 класс (Урок№23 - Уравнение с двумя переменными и его график.)Скачать

Алгебра 9 класс (Урок№23 - Уравнение с двумя переменными и его график.)

Математика без Ху!ни. Комплексные числа, часть 2. Простейшие действия.Скачать

Математика без Ху!ни. Комплексные числа, часть 2. Простейшие действия.

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

10 класс, 32 урок, Комплексные числа и арифметические операции над нимиСкачать

10 класс, 32 урок, Комплексные числа и арифметические операции над ними

Сложение, вычитание, умножение и деление комплексных чисел | Высшая математикаСкачать

Сложение, вычитание, умножение и деление комплексных чисел | Высшая математика

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

Биквадратное уравнение. Комплексные корни.Скачать

Биквадратное уравнение. Комплексные корни.
Поделиться или сохранить к себе: