Разделы: Математика
Класс: 6
Цели:
- углубление и расширение знаний по предмету;
- развитие математического кругозора, логического мышления;
- стимулирование устойчивого интереса к математике.
Задачи:
- развитие математических способностей и логического мышления;
- развитие познавательного интереса, умение применять полученные знания в нестандартных задачах.
Каждый год в школе проводится олимпиада по математике. Задачи, которые предлагают на олимпиадах разного уровня, чаще всего являются нестандартными. Для их решения нужно уметь использовать материал школьной программы в нестандартных, непривычных для ребенка ситуациях. Внеурочная деятельность по предмету позволяет учителю решать этот вопрос. Чем раньше удается сформировать у учащихся интерес к предмету, тем глубже будут знания. А радость от полученного решения трудной нестандартной задачи будет велика.
Среди тем, предлагаемых для внеклассной работы с учащимися 5-6 классов, есть задачи, которые можно свести к уравнению с несколькими переменными. В них число переменных меньше, чем число уравнений. Это вызывает определенную трудность. С другой стороны, учащиеся в 5-6 классе не владеют в нужной мере методами решения уравнений и систем. Обычно решению помогают некоторые дополнительные условия, сформулированные в задаче. Речь идет о заданиях, в которых надо решить уравнение в целых или натуральных числах.
В этой работе мы рассмотрим задачи для внеклассной работы с учащимися 5-6 классов, которые сводятся к уравнению с двумя переменными (неопределенные уравнения) и методы их решения.
1. Использование понятия НОД (наибольший общий делитель)
Задача. Ребята получили на новогодней елке одинаковые подарки. Во всех подарках вместе 123 апельсина и 82 яблока. Сколько ребят присутствовало на елке? Сколько яблок и апельсинов было в каждом подарке?
Решение. Все подарки одинаковые, т.е. в каждом одинаковое число апельсинов и яблок. Надо найти наибольшее целое число, на которое делятся числа 123 и 82. 123 = 3 . 41, 82 = 2 . 41. Получаем, что ребят на елке было 41 человек. В каждом подарке было: 123 : 41 = 3 апельсина и 82 : 41 = 2 яблока.
Ответ: 41 ребенок, 2 яблока и 3 апельсина
2. Признаки делимости при решении задач
Задача. Можно ли разменять 100 р., имея рублевые, трехрублевые и пятирублевые купюры, так, чтобы всего было 29 купюр?
Решение. Пусть в размене участвуют х рублевых, у трехрублевых и z пятирублевых купюр, х + у + z =29, х + 3у + 5z = 100. Записав это равенство в виде (х + у + z) + (2у + 4z) = 100, заключаем, что х + у + z = 29 – четное число, т.к. числа 100 и 2у + 4z – четные числа. Следовательно, нельзя разменять 100 р с помощью 29 купюр достоинством в 1р, 3 р, 5р.
Задача. Решите в натуральных числах х и у уравнение 22х + 13у = 1000.
Решение. Из уравнения видно, что число у должно быть четным. Кроме того, так как 22х + 13у > 13у, то 1000 > 13у, > у, 76 > у. Следовательно, 2 . 16 + 1 = 33, а 33 делится на 11. Очередное значение у больше 16 не на 11, а на 22. Значит, у = 38; далее у = 38 + 22 = 60. Для каждого из значений у = 16, 38, 60 вычислим соответствующее значение х.
3. Свойства уравнений
Учащиеся 5 класса и большую часть 6 класса не владеют правилом переноса слагаемых из одной части уравнения в другую. Это осложняет решения задачи, сводящейся к уравнению вида ах + ву = с. Поэтому разумно на примере чашечных весов познакомить детей с некоторыми свойствами уравнений.
Свойство: Если к обеим частям уравнения прибавить или вычесть одно и то же число, то полученное в результате этого новое уравнение имеет те же и только те же решения, что и исходное уравнение.
Задача. В клетке находятся фазаны и кролики. Известно, что у них 35 голов и 94 ноги. Сколько в клетке фазанов и сколько кроликов?
Решение. Пусть в клетке х фазанов и у кроликов. Тогда общее число зверей х + у= 35. У фазанов по 2 ноги, т.е. 2х ног у всех фазанов. У кроликов по 4 лапы, т.е. 4у лап у всех кроликов. Найдем общее число лап 2х + 4у = 94.
Попробуем решить это уравнение, используя знание материала 5 класса.
Запишем уравнение 2х + 4у = 94 в виде: 2х + 2у + 2у = 94, 2(х + у) + 2у = 94. Воспользуемся заменой выражения х + у на тождественно равное х + у = 35. Получим: 2 . 35 + 2у = 94, 70 + 2у = 94, 2у = 24, у = 12, тогда х = 23.
Ответ: было 23 фазана и 12 кроликов.
4. Метод перебора
Этот метод применяется в задачах, при решении которых, приходится перебирать различные варианты. Применяется он в основном тогда, когда искомые величины могут быть только целыми числами, а множество всех таких значений конечно.
Нередко в задачах используется свойство делимости целых чисел, а метод перебора выступает в виде составной части решения.
Задача. Дети собирали макулатуру. Каждый мальчик собрал по 21 кг, а каждая девочка по 15 кг. Всего дети собрали 174 кг. Сколько мальчиков и девочек собирали макулатуру?
Решение. Пусть девочек было х человек, а мальчиков у. Составим уравнение 15х + 21у = 174.
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Решение уравнений, 6 классСкачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:6 класс, 42 урок, Решение уравненийСкачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Линейное уравнение с двумя переменными. 6 класс.Скачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Видео:Решение уравнений - математика 6 классСкачать
Математика. 6 класс
Конспект урока
Перечень рассматриваемых вопросов:
Уравнение – равенство содержащее букву, значение которой надо найти.
Решить уравнение – значит найти все его корни.
Корнем уравнения называют такое число, при подстановке которого в уравнение вместо неизвестного, получается верное числовое равенство.
1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.
1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.
Теоретический материал для самостоятельного изучения
Как решаются уравнения? Чем уравнение отличается от буквенного выражения? На эти и другие вопросы, связанные с уравнениями, мы сегодня и будем отвечать.
Дадим определение уравнению. Уравнением называют равенство, содержащее букву, значение которой надо найти.
Например, 2х – 5=17.
Решить уравнение – значит найти все его корни.
В нашем случае x=11.
Корнем уравнения называют такое число, при подстановке которого в уравнение вместо неизвестного, получается верное числовое равенство.
Подставим в уравнение корень
Получается, что левая и правая части равны семнадцати.
При решении уравнений можно использовать следующие приёмы:
– переносить числа из одной части уравнения в другую, меняя их знак на противоположный.
– делить или умножать обе части уравнения на одно и тоже число отличное от нуля.
Равенство не изменится, если к обеим частям уравнения прибавить по числу три икс:
Перенесём число 7 из левой части в правую часть уравнения с противоположным знаком:
Применим распределительный закон для правой части:
Упростим левую и правую части уравнения:
Равенство не изменится, если обе части уравнения разделить на 5:
2 ∙ (– 3) + 7 = – 3 ∙ (– 3) – 8,
Значит, корень уравнения найден верно.
Перенесём число 3 в правую часть уравнения с противоположным знаком:
Где используются уравнения?
Ответ на этот вопрос достаточно прост. Уравнения используются практически везде. В школе мы решаем с помощью уравнений текстовые задачи. В окружающем нас мире все природные и жизненные процессы протекают по определённым закономерностям, большинство из которых можно описать с помощью уравнений. Например, если нужно определить во сколько должен выехать автомобиль, чтобы прибыть вовремя из пункта А в пункт В, необходимо использовать уравнения движения. Для точного расчёта затрат и прибыли на предприятиях используют экономические уравнения. В медицине для обработки данных ультразвуковых исследований организма тоже используются уравнения.
Итак, уравнения – это универсальный инструмент для решения самых разных прикладных задач.
Разбор заданий тренировочного модуля
Тип 1.Найдите корни уравнения.
Перенесём – 5 в правую часть уравнения с противоположным знаком:
Вычислим отдельно левую и правую части уравнения.
Это и есть корень уравнения.
Тип 2. Будет ли являться корнем данного уравнения число 7?
Чтобы выполнить данное задание нужно подставить число 7 вместо неизвестного х и проверить, будут лиравны правая и левая части уравнения. Если будут равны, то число является корнем уравнения, если правая и левая части уравнения не равны, то число не является корнем уравнения.
Видно, что при подстановке в уравнение числа 7 верное равенство не получилось. Следовательно, число 7не является корнем уравнения.
🔥 Видео
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Решить уравнение с дробями - Математика - 6 классСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Решить уравнение - Математика - 6 классСкачать
Решение уравнений. Часть 2. 6 класс.Скачать
Решение уравнений. Видеоурок 28. Математика 6 классСкачать
Математика 6 класс (Урок№50 - Уравнения. Часть 2.)Скачать
Раскрытие скобок. 6 класс.Скачать
Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать
дробное уравнение как решать для 6 классаСкачать
Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.Скачать
Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать
Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать
6 класс. Решение уравнений с модулями.Скачать