Решение уравнений с arccos и arcsin

Уравнения и неравенства, содержащие обратные тригонометрические функции

Задачи, связанные с обратными тригонометрическими функциями, часто вызывают у школьников старших классов значительные трудности. Связано это, прежде всего, с тем, что в действующих учебниках и учебных пособиях подобным задачам уделяется не слишком большое внимание, и если с задачами на вычисление значений обратных тригонометрических функций учащиеся еще как-то справляются, то уравнения и неравенства, содержащие эти функции, нередко ставят их в тупик. Последнее не удивительно, поскольку практически ни в одном учебнике (включая учебники для классов с углубленным изучением математики) не излагается методика решения даже простейших уравнений и неравенств такого рода. Предлагаемая вашему вниманию статья посвящена методам решения уравнений и неравенств, содержащих обратные тригонометрические функции. Надеемся, что она окажется полезной для учителей, работающих в старших классах – как общеобразовательных, так и математических.

Вначале напомним важнейшие свойства обратных тригонометрических функций.

1 Функция y = arcsin x определена и монотонно возрастает на отрезке [– 1; 1];

arcsin (– x) = – arcsin x (x О [– 1; 1]);
Решение уравнений с arccos и arcsin

2 Функция y = arccos x определена и монотонно убывает на отрезке [– 1; 1];

3 Функция y = arctg x определена и монотонно возрастает на R;

arctg (– x) = – arctg x (x О R);
Решение уравнений с arccos и arcsin

4 Функция y = arcctg x определена и монотонно убывает на R;

5

Решение уравнений с arccos и arcsin

Свойства монотонности и ограниченности являются ключевыми при решении многих уравнений и неравенств, содержащих обратные тригонометрические функции. Перейдем к рассмотрению методов решения этих уравнений и неравенств.

I. Уравнения и неравенства, левая и правая части которых являются одноименными обратными тригонометрическими функциями

Решение уравнений и неравенств, левая и правая части которых представляют собой одноименные обратные тригонометрические функции различных аргументов, основывается, прежде всего, на таком свойстве этих функций, как монотонность. Напомним, что функции y = arcsin t и y = arctg t монотонно возрастают, а функции y = arccos t и y = arcctg t монотонно убывают на своих областях определения. Поэтому справедливы следующие равносильные переходы.

1 .

Решение уравнений с arccos и arcsin

2 .

Решение уравнений с arccos и arcsin

3 .

4 .

Замечание 1. Какой из двух равносильных систем пользоваться при решении уравнений 1а) и 2а), зависит от того, какое неравенство проще: | f(x) | Ј 1 (тогда используем первую систему), или | g(x) | Ј 1 (в этом случае используем вторую систему).

Пример 1. Решить уравнение arcsin (3x 2 – 4x – 1) = arcsin (x + 1).

Решение. Уравнение равносильно системе

Решение уравнений с arccos и arcsin

Замечание 2. Решать неравенство, входящее в систему, вообще говоря, не обязательно. Достаточно проверить, удовлетворяют ли неравенству найденные корни уравнения, как это и было сделано при решении примера 1.

Пример 2. Решить неравенство arcctg (8x 2 – 6x – 1) Ј arcctg (4x 2 – x + 8).

Решение. Неравенство равносильно следующему:

Решение уравнений с arccos и arcsin

Пример 3. Решить неравенство 3arcsin 2x

Решение уравнений с arccos и arcsin

Пример 4. Решить неравенство arccos (x 2 – 3) Ј arccos (x + 3).

Решение уравнений с arccos и arcsin

Пример 5. Решить уравнение arccos (4x 2 – 3x – 2) + arccos (3x 2 – 8x – 4) = p .

Решение. Так как p – arccos t = arccos (– t), то имеет место следующая цепочка равносильных преобразований:

arccos (4x 2 – 3x – 2) = p – arccos (3x 2 – 8x – 4) Ы
Ы arccos (4x 2 – 3x – 2) = arccos (– 3x 2 + 8x + 4) Ы

Решение уравнений с arccos и arcsin

Аналогичные равносильные преобразования используются и при решении задач с параметрами.

Пример 7. Решить уравнение с параметром a: arcsin (ax 2 – ax + 1) + arcsin x = 0.

Решение. Уравнение равносильно уравнению

Решение уравнений с arccos и arcsin

Рассмотрим два случая:

1) a = 0. В этом случае система примет вид: Решение уравнений с arccos и arcsin

2) a № 0. В этом случае уравнение системы является квадратным. Его корни: Решение уравнений с arccos и arcsin
Так как | x | Ј 1, то Решение уравнений с arccos и arcsin . Если a = – 1, то x2 = x1 = 1. Если a О (– Ґ Ч ; – 1) И [1; Ґ ), то уравнение имеет два корня.

Ответ: при Решение уравнений с arccos и arcsin при a = – 1 и a = 0 x = 1; при прочих a решений нет.

Пример 8. Решить неравенство с параметром a: arccos (3ax + 1) Ј arccos (2x + 3a – 1).

Решение. Неравенство равносильно системе Решение уравнений с arccos и arcsin

Решать последнюю систему можно графо-аналитическим методом, учитывая то, что при a > Решение уравнений с arccos и arcsin первое неравенство системы равносильно неравенству x і 1, при a Решение уравнений с arccos и arcsin – неравенству x Ј 1, при a = Решение уравнений с arccos и arcsin решением первого неравенства является любое действительное число. Множество всех точек (x; a) плоскости Oxa, удовлетворяющих системе, показано на рис. 1 штриховкой.

Решение уравнений с arccos и arcsinОтвет: при | a | > Решение уравнений с arccos и arcsinрешений нет; при a = – Решение уравнений с arccos и arcsinx = 1;

Решение уравнений с arccos и arcsin

II. Уравнения и неравенства, левая и правая части которых являются разноименными обратными тригонометрическими функциями

При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождествами. Эта группа задач является чуть более сложной по сравнению с предыдущей. При решении многих уравнений такого рода бывает целесообразно не обсуждать вопрос о равносильности преобразований, а сразу переходить к уравнению-следствию и после его решения делать необходимую проверку. Рассуждения здесь могут быть примерно следующими. Пусть требуется решить уравнение arcsin f(x) = arccos g(x). Предположим, что x0 – решение этого уравнения. Обозначим arcsin f(x0) = arccos g(x0) через a. Тогда sin a = f(x0), cos a = g(x0), откуда f 2 (x0) + g 2 (x0) = 1. Итак, arcsin f(x) = arccos g(x) Ю f 2 (x) + g 2 (x) = 1. (1)

Рассуждая аналогично, можно получить следующие переходы:

Решение уравнений с arccos и arcsin

Решение уравнений с arccos и arcsin

Замечание 3. Корнем каждого из уравнений (1)–(4) может быть только такое число x0, для которого f(x0) і 0 и g(x0) і 0. В противном случае множество значений левой и правой частей уравнения не пересекаются.

Пример 9. Решить уравнение Решение уравнений с arccos и arcsin

Решение уравнений с arccos и arcsin

Корень Решение уравнений с arccos и arcsin является посторонним.

Пример 10. Решить уравнение Решение уравнений с arccos и arcsin

Решение уравнений с arccos и arcsin

Корень x = – 2 является посторонним.

Ответ: . Решение уравнений с arccos и arcsin

Пример 11. Решить уравнение arctg (2sin x) = arcctg (cos x).

Решение уравнений с arccos и arcsin

Корни вида Решение уравнений с arccos и arcsin являются посторонними.

Ответ: Решение уравнений с arccos и arcsin

При решении неравенств, левая и правая части которых представляют собой разноименные обратные тригонометрические функции, целесообразно использовать метод интервалов, а в некоторых случаях учитывать свойства монотонных функций.

Пример 12. Решить неравенство Решение уравнений с arccos и arcsin

Решение. Рассмотрим функцию Решение уравнений с arccos и arcsin

и решим неравенство f(x) Ј 0 методом интервалов.

1) Найдем D(f). Для этого решим систему

Решение уравнений с arccos и arcsin

2) Найдем нули f(x). Для этого решим уравнение

Решение уравнений с arccos и arcsin

Решение уравнений с arccos и arcsin

Корень x = – 2 является посторонним.

3) Решим неравенство f(x) Ј 0 методом интервалов.

Решение уравнений с arccos и arcsin

Замечание 4. Заметим, что найдя корень уравнения Решение уравнений с arccos и arcsin можно было не обращаться к методу интервалов, а воспользоваться тем, что функция Решение уравнений с arccos и arcsin является монотонно возрастающей, а функция Решение уравнений с arccos и arcsin монотонно убывающей на отрезке Решение уравнений с arccos и arcsin . Поэтому решением исходного неравенства является промежуток [– 2; 1]. Следует, однако, понимать, что метод интервалов является более универсальным, – ведь его можно применять и в тех случаях, когда использование свойств монотонных функций не приводит к искомому результату.

При решении уравнений и неравенств данного типа, содержащих параметры, становится актуальным вопрос о равносильности преобразований. Чтобы преобразования (1)–(4) сделать равносильными, следует учесть естественные ограничения, связанные с областями определения обратных тригонометрических функций и множествами их значений (см. замечание 3). Так, например,

Решение уравнений с arccos и arcsin

Пример 13. Решить уравнение с параметром a: arcctg (x – 2a) = arctg (2xa).

Решение. Данное уравнение равносильно системе Решение уравнений с arccos и arcsin

Графиком квадратного трехчлена f(x) = 2x 2 – 5ax + 2a2 – 1 является парабола, ветви которой направлены вверх. Поскольку f(2a) = – 1 2a. Это корень Решение уравнений с arccos и arcsin

Ответ: при любом a Решение уравнений с arccos и arcsin

III. Замена переменной

Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометрических функций.

Пример 14. Решить уравнение Решение уравнений с arccos и arcsin

Решение. Обозначим Решение уравнений с arccos и arcsin После преобразований получим уравнение

Решение уравнений с arccos и arcsin

Поскольку Решение уравнений с arccos и arcsin

откуда Решение уравнений с arccos и arcsin

Ответ: Решение уравнений с arccos и arcsin

Пример 15. Решить неравенство arccos 2 x – 3arccos x + 2 і 2.

Решение. Пусть arccos x = t, 0 Ј t Ј p . Тогда Решение уравнений с arccos и arcsin

Поскольку Решение уравнений с arccos и arcsin откуда Решение уравнений с arccos и arcsin

Ответ: [– 1; cos 2] И [cos 1; 1].

Иногда свести уравнение или неравенство к алгебраическому можно с помощью тождества

Решение уравнений с arccos и arcsin

Пример 16. Решить уравнение Решение уравнений с arccos и arcsin

Решение. Данное уравнение равносильно следующему:

Решение уравнений с arccos и arcsin

Пусть arcsin x = t, Решение уравнений с arccos и arcsin

Тогда Решение уравнений с arccos и arcsin

Решение уравнений с arccos и arcsin

Решение уравнений с arccos и arcsin

IV. Использование свойств монотонности и ограниченности обратных тригонометрических функций

Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основывается исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются следующие теоремы.

Теорема 1. Если функция y = f(x) монотонна, то уравнение f(x) = c (c = const) имеет не более одного решения.

Теорема 2. Если функция y = f(x) монотонно возрастает, а функция y = g(x) монотонно убывает, то уравнение f(x) = g(x) имеет не более одного решения.

Теорема 3. Если Решение уравнений с arccos и arcsin то на множестве X уравнение f(x) = g(x) равносильно
системе Решение уравнений с arccos и arcsin

Пример 17. Решить уравнение 2arcsin 2x = 3arccos x.

Решение. Функция y = 2arcsin 2x является монотонно возрастающей, а функция y = 3arccos x – монотонно убывающей. Число x = 0,5 является, очевидно, корнем данного уравнения. В силу теоремы 2 этот корень – единственный.

Пример 18. Решить уравнение Решение уравнений с arccos и arcsin

Решение. Пусть x 2 + x = t. Тогда уравнение примет вид Решение уравнений с arccos и arcsin

Функции Решение уравнений с arccos и arcsinявляются монотонно возрастающими. Поэтому функция Решение уравнений с arccos и arcsinтакже является монотонно возрастающей. В силу теоремы 1 уравнение Решение уравнений с arccos и arcsinимеет не более одного корня. Очевидно, что t = 0 является корнем этого уравнения. Поэтому x 2 + x = 0 Решение уравнений с arccos и arcsin

Пример 19. Решить неравенство Решение уравнений с arccos и arcsin

Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке Решение уравнений с arccos и arcsinфункцию Решение уравнений с arccos и arcsinУравнение Решение уравнений с arccos и arcsinв силу теоремы 1 имеет не более одного корня. Очевидно, что Решение уравнений с arccos и arcsin– корень этого уравнения. Поэтому решением неравенства Решение уравнений с arccos и arcsinявляется отрезок Решение уравнений с arccos и arcsin

Ответ: Решение уравнений с arccos и arcsin

Пример 20. Решить уравнение arcsin (x(x + y)) + arcsin (y(x + y)) = p .

Решение. Поскольку arcsin Решение уравнений с arccos и arcsinто левая часть уравнения не превосходит Решение уравнений с arccos и arcsinЗнак равенства возможен, лишь если каждое слагаемое левой части равно Решение уравнений с arccos и arcsin. Таким образом, уравнение равносильно системе:

Решение уравнений с arccos и arcsin

Решение последней системы не представляет труда.

Содержание
  1. Алгебра
  2. Арккосинус
  3. Решение уравнений tgx = a и ctgx = a
  4. Основные формулы с арксинусом, арккосинусом, арктангенсом и арккотангенсом
  5. Формулы с обратными тригонометрическими функциями: arcsin, arccos, arctg и arcctg
  6. Формулы котангенса арккотангенса, тангенса арктангенса, синуса арксинуса и косинуса арккосинуса
  7. Формулы арккотангенса котангенса, арктангенса тангенса и арксинуса синуса и арккосинуса косинуса
  8. Как соотносятся между собой арксинусы, арккосинусы, арктангенсы и арккотангенсы противоположных чисел
  9. Формулы суммы: арксинус + арккосинус, арктангенс + арккотангенс
  10. Формулы связи между прямыми и обратными тригонометрическими функциями
  11. Доказательства формул синусов арккосинуса, арккотангенса и арктангенса
  12. Доказательства формул тангенсов арксинуса, арккосинуса и арккотангенса
  13. Как выразить арксинус через арккосинус, арктангенс и арккотангенс и так далее
  14. Прочие формулы с обратными функциями
  15. 🎦 Видео

Видео:Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать

Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.

Алгебра

План урока:

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.

Задание. Решите ур-ние

Задание. Запишите корни ур-ния

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

Наконец, решениями ур-ния

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

Таким образом, у ур-ния tgx = a существует очевидное решение

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

Задание. Решите ур-ние

Задание. Запишите формулу корней ур-ния

Далее рассмотрим ур-ние вида

Задание. Решите ур-ние

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Видео:Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !

Основные формулы с арксинусом, арккосинусом, арктангенсом и арккотангенсом

Видео:Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.Скачать

Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.

Формулы с обратными тригонометрическими функциями: arcsin, arccos, arctg и arcctg

Ранее мы рассматривали обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс. Как и в случае с другими функциями, между ними существуют связи и зависимости, реализуемые в виде формул, которые можно использовать для решения задач.

Сейчас мы будем рассматривать основные формулы с использованием этих функций: какие они бывают, на какие группы их можно разделить, как их доказать и как решать задачи с их помощью.

Видео:10 класс, 21 урок, Обратные тригонометрические функцииСкачать

10 класс, 21 урок, Обратные тригонометрические функции

Формулы котангенса арккотангенса, тангенса арктангенса, синуса арксинуса и косинуса арккосинуса

Для начала сгруппируем формулы, в которых содержатся основные свойства обратных тригонометрических функций. Мы уже обсуждали и доказывали их ранее, а здесь приведем, чтобы логика объяснения была более понятной и все формулы были в одной статье.

д л я α ∈ — 1 , 1 sin ( a r c c i s α ) = α , cos ( a r c cos α ) = α , д л я α ∈ ( — ∞ , ∞ ) t g ( a r c t g α ) = α , c t g ( a r c c t g α ) = α

Указанное в них легко сформулировать из самих определений обратных тригонометрических функций числа. Если вы забыли, как найти, например, тангенс арктангенса, все можно посмотреть в этой формуле.

Видео:Алгебра 10 класс. 18 октября. Что такое arccos арккосинусСкачать

Алгебра 10 класс. 18 октября. Что такое arccos арккосинус

Формулы арккотангенса котангенса, арктангенса тангенса и арксинуса синуса и арккосинуса косинуса

д л я — π 2 ≤ α ≤ π 2 a r c sin ( sin α ) = α , д л я 0 ≤ α ≤ π arccos ( cos α ) = α , д л я — π 2 α π 2 arctg ( tg α ) = α , д л я 0 α π arcctg ( ctg α ) = α

Здесь все также более-менее очевидно, как и в предыдущем пункте: эти формулы можно вывести из определений арксинуса, арккосинуса и др. Единственное, на что нужно обратить пристальное внимание: они будут верны только в том случае, если a (число или угол) будут входить в указанный предел. В противном случае расчет по формуле будет ошибочен, и применять ее нельзя.

Видео:Вычисление аркфункцийСкачать

Вычисление аркфункций

Как соотносятся между собой арксинусы, арккосинусы, арктангенсы и арккотангенсы противоположных чисел

В этом блоке мы сформулируем важное утверждение:

Обратные тригонометрические функции отрицательного числа можно выразить через арксинус, арккосинус, арктангенс и арккотангенс противоположного ему положительного числа.

д л я α ∈ — 1 , 1 a r c c i s ( — α ) = — a r c sin α , a r c cos ( — α ) = π — a r c cos α , д л я α ∈ ( — ∞ , ∞ ) a r c t g ( — α ) = — a r c t g α , a r c c t g ( — α ) = π — arcctg α

Таким образом, если в расчетах нам встречаются эти функции для отрицательных чисел, мы можем от них избавиться, преобразовав их в аркфункции положительных чисел, с которыми иметь дело проще.

Видео:Занятие 4. Арксинус и арккосинус. Основы тригонометрииСкачать

Занятие 4. Арксинус и арккосинус. Основы тригонометрии

Формулы суммы: арксинус + арккосинус, арктангенс + арккотангенс

Они выглядят следующим образом:

д л я α ∈ — 1 , 1 a r c c i s α + a r c cos α = π 2 , д л я α ∈ ( — ∞ , ∞ ) a r c t g α + a r c c t g α = π 2

Из написанного видно, что арксинус некоторого числа можно вывести с помощью его арккосинуса, и наоборот. С арктангенсом и арккотангенсом аналогично – они соотносятся между собой аналогичным образом.

Видео:Как найти значения аркфункций? (Перечень, ДВИ)Скачать

Как найти значения аркфункций? (Перечень, ДВИ)

Формулы связи между прямыми и обратными тригонометрическими функциями

Знать связи между прямыми функциями и их аркфункциями очень важно для решения многих практических задач. Как же быть, если у нас есть необходимость вычислить, к примеру, тангенс арксинуса? Ниже приведен список основных формул для этого, которые полезно выписать себе.

— 1 ≤ α ≤ 1 , sin ( a r c sin α ) = α— 1 ≤ α ≤ 1 , sin ( a r c cos α ) = 1 — α 2— ∞ ≤ α ≤ + ∞ , sin ( a r c t g α ) = α 1 + α 2— ∞ ≤ α ≤ + ∞ , sin ( a r c c t g α ) = 1 1 + α 2
— 1 ≤ α ≤ 1 , cos ( a r c sin α ) = 1 — α 2— 1 ≤ α ≤ 1 , cos ( a r c cos α ) = α— ∞ ≤ α ≤ + ∞ , cos ( a r c t g α ) = 1 1 + α 2— ∞ ≤ α ≤ + ∞ , cos ( a r c c t g α ) = 1 1 + α 2
— 1 α 1 , t g ( a r c sin α ) = α 1 — α 2α ∈ ( — 1 , 0 ) ∪ ( 0 , 1 ) , t g ( a r c cos α ) = 1 — α 2 α— ∞ ≤ α ≤ + ∞ , t g ( a r c t g α ) = αα ≠ 0 , t g ( a r c c t g α ) = 1 α
α ∈ ( — 1 , 0 ) ∪ ( 0 , 1 ) , c t g ( a r c sin α ) = 1 — α 2 α— 1 α 1 , c t g ( a r c cos α ) = α 1 — α 2α ≠ 0 , c t g ( a r c t g α ) = 1 α— ∞ ≤ α ≤ + ∞ , c t g ( a r c c t g α ) = α

Теперь разберем примеры, как они применяются в задачах.

Вычислите косинус арктангенса из 5 .

Решение

У нас для этого есть подходящая формула следующего вида: cos ( a r c t g α ) = 1 1 + α 2

Подставляем нужное значение: cos ( a r c t g 5 ) = 1 1 + ( 5 ) 2 = 2 6

Вычислить синус арккосинуса 1 2 .

Решение

Для этого нам понадобится формула: sin ( a r c cos α ) = 1 — a 2

Подставляем в нее значения и получаем: sin ( a r c cos 1 2 ) = 1 — ( 1 2 ) 2 = 3 2

Обратите внимание, что непосредственные вычисления приводят к аналогичному ответу: sin ( a r c cos 1 2 ) = sin π 3 = 3 2

Если вы забыли, как правильно вычислять значения прямых и обратных функций, вы всегда можете вернуться к нашим предыдущим материалам, где мы разбирали это.

Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Доказательства формул синусов арккосинуса, арккотангенса и арктангенса

Для того, чтобы наглядно вывести полученные формулы, нам понадобятся основные тригонометрические тождества и собственно формулы основных обратных функций — косинуса арккосинуса и др. Мы их уже выводили ранее, поэтому тратить время на их доказательства не будем. Начнем сразу с формул синусов арккосинуса, арккотангенса и арктангенса. Используя тождество, получим:

sin 2 α + cos 2 α = 1 1 + c t g 2 α = 1 sin 2 α

Вспомним, что t g α · c t g α = 1 . Из этого можно получить:

sin α = 1 — cos 2 α , 0 ≤ α ≤ π sin α = t g α 1 + t g 2 α , — π 2 α π 2 sin α = 1 1 + c t g 2 α , 0 α π

У нас получилось, что мы выразили синус через необходимые аркфункции при заданном условии.

Теперь в первой формуле вместо a мы добавим arccos a. Итог — формула синуса арккосинуса.

Далее во вторую вместо a ставим arctg a. Это формула синуса арктангенса.

Аналогично с третьей – если мы добавим в нее arcctg a, будет формула синуса арктангенса.

Все наши расчеты можно сформулировать более емко:

  1. sin α = 1 — cos 2 α , 0 ≤ α ≤ π

Следовательно, sin ( a r c cos α ) = 1 — cos 2 ( a r c cos α ) = 1 — a 2

  1. sin α = t g α 1 + t g α , — π 2 α π 2 ,

Следовательно, sin ( a r c t g α ) = t g ( a r c t g α ) 1 + t g 2 ( a r c t g α ) = α 1 + α 2

  1. sin α = 1 1 + c t g 2 α , 0 α π

Следовательно, sin ( a r c t g α ) = 1 1 + t g 2 ( a r c t g α ) = 1 1 + α 2

Выводим формулы косинуса арксинуса, косинуса арктангенса и косинуса арккотангенса.

Их мы выведем по имеющемуся шаблону:

  1. Из cos α = 1 — sin 2 α , — π 2 ≤ α ≤ π 2 следует, что

cos ( a r c sin α ) = 1 — sin 2 ( a r c sin α ) = 1 — a 2

  1. Из cos α = 1 1 + t g 2 α , — π 2 α π 2 следует, что
  2. Из cos α = c t g α 1 + c t g 2 α , 0 α π cos ( a r c t g α ) = 1 1 + t g 2 ( a r c t g α ) = 1 1 + α 2

следует, что cos ( a r c t g α ) = c t g ( a r c c t g α ) 1 + c t g 2 ( a r c c t g α ) = α 1 + α 2

Видео:Алгебра 10 класс. 25 октября. Что такое арксинус arcsinСкачать

Алгебра 10 класс. 25 октября. Что такое арксинус arcsin

Доказательства формул тангенсов арксинуса, арккосинуса и арккотангенса

  1. Исходим из t g α = sin α 1 — sin 2 α , — π 2 α π 2 . Получаем t g ( a r c sin α ) = sin ( a r c sin α ) 1 — sin 2 ( a r c sin α ) = α 1 — α 2 при условии, что — 1 α 1 .
  2. Исходим из t g α = 1 — cos 2 α cos α , α ∈ [ 0 , π 2 ) ∪ ( π 2 , π ] , получаем

t g ( a r c cos α ) = 1 — cos 2 ( a r c cos α ) cos ( a r c c os α ) = 1 — α 2 α при условии α ∈ ( — 1 , 0 ) ∪ ( 0 , 1 ) .

  1. Исходим из t g α = 1 c t g α , α ∈ ( 0 , π 2 ) ∪ ( π 2 , π ) , получаем t g ( a r c c t g α ) = 1 c t g ( a r c c t g α ) = 1 α при условии, что α ≠ 0 .

Теперь нам нужны формулы котангенсов арксинуса, арккосинуса и арктангенса. Вспомним одно из тригонометрических равенств:

c t g α = 1 t g α

Используя его, мы можем сами вывести необходимые формулы, используя формулы тангенса арксинуса, тангенса арккосинуса и тангенса арктангенса. Для этого понадобится поменять в них местами числитель и знаменатель.

Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Как выразить арксинус через арккосинус, арктангенс и арккотангенс и так далее

Мы связали между собой прямые и обратные тригонометрические функции. Полученные формулы дадут нам возможность связать и одни обратные функции с другими, то есть выразить одни аркфункции через другие аркфункции. Разберем примеры.

Здесь мы можем заменить арксинус на арккосинус, арктангенс и арккотангенс соответственно, и получить искомую формулу:

a r c sin α = a r c cos 1 — α 2 , 0 ≤ α ≤ 1 — a r c cos 1 — a 2 , — 1 ≤ α 0 a r c sin α = a r c t g α 1 — α 2 , — 1 α 1 a r c sin α = a r c c t g 1 — α 2 α , 0 α ≤ 1 a r c c t g 1 — α 2 α — π , — 1 ≤ α ≤ 0

А так мы выразим арккосинус через остальные обратные функции:

a r c cos α = a r c sin 1 — α 2 , 0 ≤ α ≤ 1 π — arcsin 1 — α 2 , — 1 ≤ α 0 a r c cos α = a r c t g 1 — α 2 α , 0 α ≤ 1 π + arctg 1 — α 2 α , — 1 α 0 arccosα = arcctg α 1 — α 2 , — 1 α 1

Формула выражения арктангенса:

a r c t g α = a r c sin α 1 + α 2 , — ∞ α + ∞ a r c t g α = a r c cos 1 1 + α 2 , α ≥ 0 — a r c cos 1 1 + α 2 , α 0 a r c t g α = a r c c t g 1 α , α ≠ 0

Последняя часть – выражение арккотангенса через другие обратные функции:

a r c c t g α = a r c sin 1 1 + α 2 , α ≥ 0 π — a r c sin 1 1 + α 2 , α 0 a r c c t g α = a r c cos α 1 + α 2 , — ∞ α + ∞ a r c c t g α = a r c t g 1 α , α ≠ 0

Теперь попробуем доказать их, опираясь на основные определения обратных функций и ранее выведенных формул.

Возьмём a r c sin α = a r c t g α 1 — α 2 , — 1 α 1 и постараемся вывести доказательство.

Мы знаем, что a r c t g α 1 — α 2 — это число, величина которого составляет от минус половины пи до плюс половины пи. Из формулы синуса арктангенса получим:

sin ( a r c t g α 1 — α 2 ) = α 1 — α 2 1 + ( α 1 — α 2 ) 2 = α 1 — α 2 1 + α 2 1 — α 2 = α 1 — α 2 1 + α 2 1 — α 2 = α 1 — α 2 1 1 — α 2 = α

Получается, что a r c t g α 1 — α 2 при условии 1 a 1 – это и есть арксинус числа a .

Вывод: a r c sin a = a r c t g a 1 — a 2 , — 1 a 1

Прочие формулы доказываются по аналогии.

В завершение разберем один пример применения формул на практике.

Условие Вычислить синус арккотангенса минус корня из 3 .

Решение

Нам понадобится формула выражения арккотангенса через арксинус: a r c c t g α = a r c sin 1 1 + a 2 , α ≥ 0 π — arcsin 1 1 + a 2 , α 0
Подставим в нее α = — 3 и получим ответ – 1 2 . Непосредственное вычисление дало бы нам те же результаты: sin ( a r c c t g ( — 3 ) ) = sin 5 π 6 = 1 2 Для решения задачи можно взять и другую формулу, выражающую синус через котангенс: sin α = 1 1 + c t g 2 α , 0 α π

В итоге у нас бы вышло: sin ( a r c c t g ( — 3 ) ) = 1 1 + c t g 2 ( a r c c t g ( — 3 ) ) = 1 1 + ( — 3 ) 2 = 1 2

Или возьмем формулу синуса арккотангенса и получим тот же ответ: sin ( a r c c t g α ) = 1 1 + α 2 sin ( a r c c t g ( — 3 ) ) = 1 1 + ( — 3 ) 2 = 1 2

Видео:Решение уравнений вида sin x = a, cos x = a, tg x = a. Понятное объснение арксинуса и арккосинуса.Скачать

Решение уравнений вида sin x = a, cos x = a, tg x = a. Понятное объснение арксинуса и арккосинуса.

Прочие формулы с обратными функциями

Мы рассмотрели самые основные формулы, которые понадобятся вам при решении задач. Однако это не все формулы с аркфункциями: есть и ряд других, специфичных, которые употребляются нечасто, но все же их знание может быть полезно. Запоминать их особого смысла нет: проще вывести их тогда, когда они нужны.

Разберем одну из них, называемую формулой половинного угла. Она выглядит следующим образом:

sin 2 α 2 = 1 — cos α 2

Если угол альфа при этом больше нуля, но меньше числа пи, то у нас выходит:

sin α 2 = 1 — cos α 2

Учитывая данное условие, заменяем упомянутый угол на arccos. В итоге наша предварительная формула выглядит так:

sin a r c cos α 2 = 1 — cos ( a r c cos α ) 2 ⇔ sin a r c cos α 2 = 1 — α 2

Отсюда мы выводим итоговую формулу, в которой арксинус выведен через арккосинус:

a r c cos α 2 = a r c sin 1 — α 2

Мы перечислили не все связи, которые имеются между обратными тригонометрическими функциями, а лишь наиболее употребляемые из них. Важно подчеркнуть, что ценность имеют не столько сами сложные формулы, что мы привели в статье: заучивать их наизусть не нужно. Гораздо важнее уметь самому делать нужные преобразования, и тогда сложные вычисления не потребуется хранить в голове.

В продолжение темы в следующей статье мы рассмотрим преобразование выражений с арксинусом, арккосинусом, арктангенсом и арккотангенсом.

🎦 Видео

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства

Найдите (Arcsin(cos92°))^2Скачать

Найдите (Arcsin(cos92°))^2

Задачи на обратные тригонометрические функции: arcsin arccos arctg | ТригонометрияСкачать

Задачи на обратные тригонометрические функции: arcsin  arccos arctg | Тригонометрия

Что такое Арксинус, Арккосинус, Арктангенс и Арккотангес?Скачать

Что такое Арксинус, Арккосинус, Арктангенс и Арккотангес?

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений
Поделиться или сохранить к себе: