Решение уравнений по функции y kx

График линейной функции, его свойства и формулы

Решение уравнений по функции y kx

О чем эта статья:

Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Понятие функции

Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:

Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

Словесный способ.

Графический способ — наглядно. Его мы и разберем в этой статье.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Видео:ГРАФИК ФУНКЦИИ y = kx + b | линейная функция | 7 классСкачать

ГРАФИК ФУНКЦИИ  y = kx + b | линейная функция | 7 класс

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

если х = 0, то у = -2;

если х = 2, то у = -1;

если х = 4, то у = 0 и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.

ФункцияКоэффициент kКоэффициент b
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.

Видео:Занятие 1. График линейной функции y=kx+bСкачать

Занятие 1. График линейной функции y=kx+b

Свойства линейной функции

Область определения функции — множество всех действительных чисел.

Множеством значений функции является множество всех действительных чисел.

График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

Функция не имеет ни наибольшего, ни наименьшего значений.

Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

b ≠ 0, k = 0, значит, y = b — четная;

b = 0, k ≠ 0, значит, y = kx — нечетная;

b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

График функции пересекает оси координат:

ось абсцисс ОХ — в точке (−b/k; 0);

ось ординат OY — в точке (0; b).

x = −b/k — является нулем функции.

Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

При k 0, то этот угол острый, если k

Видео:Алгебра 7 Линейная функция y=kxСкачать

Алгебра 7 Линейная функция y=kx

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Решение уравнений по функции y kx

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

если k > 0, то график наклонен вправо;

если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;

если b 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Если k > 0 и b

В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.

Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.

Например, график уравнения х = 3:

Решение уравнений по функции y kx

Условие параллельности двух прямых:

График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.

Условие перпендикулярности двух прямых:

График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.

Точки пересечения графика функции y = kx + b с осями координат:

С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.

Координаты точки пересечения с осью OY: (0; b).

С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.

Координаты точки пересечения с осью OX: (−b/k; 0).

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.

Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.

Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:

Таким образом, нам надо построить график функции y = -4x — 10

Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).

Поставим эти точки в координатной плоскости и соединим прямой:

Решение уравнений по функции y kx

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.

Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.

Решение уравнений по функции y kx

Вычтем из второго уравнения системы первое, и получим k = 3.

Подставим значение k в первое уравнение системы, и получим b = -2.

Ответ: уравнение прямой y = 3x — 2.

Видео:Функция y=k/x и ее график. 7 класс.Скачать

Функция y=k/x и ее график. 7 класс.

Функция y=k/х — свойства, график и примеры решения задач

Решение уравнений по функции y kx

Видео:Алгебра 8 класс (Урок№14 - Функция y = k/x и её график.)Скачать

Алгебра 8 класс (Урок№14 - Функция y = k/x и её график.)

Общие сведения

Функцией называется некоторая зависимость переменных друг от друга. В некоторых случаях неизвестные величины могут быть выражены системой конкретных значений, интервалами, а также другими функциональными выражениями. Последний класс называется сложным или составным. Различают зависимые и независимые переменные (аргументы). Второй тип может принимать любые значения, кроме тех, которые превращают выражение в неопределенность.

Решение уравнений по функции y kx

Однако аргументы необходимо также обследовать, поскольку они могут обратить тождество в пустое множество. Одним из таких примеров является функция у = к / х. Ее аргумент x может принимать любые значения, кроме 0. Именно это число превращает уравнение в неопределенность, поскольку в математике существует следующее правило: запрещается делить на 0.

Следует отметить, что существует функция y = k/x и ее график — кривая, имеющая название гипербола. Многие путают его с параболой (в степени 2). Однако она является квадратичной. График строится в системе координат, которая называется декартовой. Кроме того, в математике встречается еще одно уравнение вида y = кх. Ее графиком является прямая.

Прямоугольная система координат

В математике существуют специальные инструменты для построения графиков функций. Одним из них считается распространенная прямоугольная система координат. Она может быть на плоскости и в пространстве. Поскольку y = k/x и y = kx являются элементарными, то для иллюстрации их графиков используется однородная прямоугольная декартовая система координат (рис. 1), элементом которой является точка.

Для декартовой системы на плоскости имеется только две координаты: по взаимно перпендикулярным осям ординат (ОУ) и абсцисс (ОХ). Они пересекаются в некоторой точке О, которая называется началом координат.

Решение уравнений по функции y kx

Рисунок 1. Прямоугольная декартова система координат (ДСК).

При указании координат нужно учитывать четверть. От нее зависит знак. Оси ординат (игрек) и абсцисс (икс) делят систему на четыре четверти. Они обозначаются римскими цифрами (рис. 1) и имеют такие свойства:

  • Первая — I: координаты x и y являются положительными числами, т. е. x > 0 и y > 0.
  • II: x 0.
  • III: x 0 и y 0, то он является острым, т. е. его значение меньше 90 градусов. При к 0, то она располагается в I и III. Когда к 0 при х, принадлежащим промежутку (2;6) U [8;10]. Аналогично указывается отрезок, на котором заданная функция принимает отрицательные значения (f(x) 0). Следовательно, она обладает такими свойствами:

Решение уравнений по функции y kx

  • График: кривая-гипербола.
  • D(y) = (-inf;0) U (0;+inf).
  • Если x > 0, то y > 0.
  • При отрицательных величинах аргумента функция принимает отрицательные значения.
  • Она убывает на интервалах: (-inf;0) и (0;+inf).
  • Точек экстремума нет.
  • Непрерывна, кроме точки х = 0.
  • Непериодическая.
  • Нечетная.

Когда к 0 при отрицательных значениях аргумента, а y 0. Функция y = kx обладает такими свойствами (k > 0):

Видео:Линейная функция и ее график. 7 класс.Скачать

Линейная функция и ее график. 7 класс.

Линейная функция в математике с примерами решения и образцами выполнения

Линейная функция — функция вида y=kx+b (для функций одной переменной).

Решение уравнений по функции y kx

Видео:Алгебра 8 класс (Урок№3 - График функции y=kx)Скачать

Алгебра 8 класс (Урок№3 - График функции y=kx)

Определение и геометрический смысл

Рассмотрим уравнение с двумя неизвестными х и у:

Решение уравнений по функции y kx

где Решение уравнений по функции y kxи b — заданные числа. Этому уравнению удовлетворяет бесконечное множество пар чисел х и у.

Решение уравнений по функции y kx

удовлетворяют следующие пары:

Решение уравнений по функции y kx

Для того чтобы найти пару чисел, удовлетворяющих уравнению ( * ), нужно придать х произвольное числовое значение и подставить в уравнение ( * ), тогда у получит определенное числовое значение. Например, если х = 27, то у = 2 x 27 — 6 = 48. Очевидно, что пара чисел х =27 и у =48 удовлетворяет уравнению (*). Так же и в случае уравнения (1) можно придать х произвольное числовое значение и получить для у соответствующее числовое значение.

Так как в данном уравнении х может принимать любое числовое значение, то его называют переменной величиной. Поскольку выбор этого числового значения ничем не ограничен, то х называют независимой переменной величиной или аргументом.

Для у получаются также различные значения, но уже в зависимости от выбранного значения х; поэтому у называют зависимым переменным или функцией.

Функцию у, определяемую уравнением (1), называют линейной функцией.

Пример:

Вычислить значения линейной функции, определяемой уравнением у = 0,5х + 3,7, при следующих значениях независимого переменного: х1 = 0, х2 = —0,5, х3 = —7,6.

Решение уравнений по функции y kx

Покажем, что если принять пару чисел х и у, удовлетворяющих уравнению (1), за абсциссу и ординату точки, то геометрическим местом этих точек будет прямая линия (рис. 14).

Решение уравнений по функции y kx

В самом деле, рассмотрим точку В(0, b) и точки М1(х1, у1) и М2(х2, у2), координаты которых удовлетворяют уравнению (1), т. е.

Решение уравнений по функции y kx

Обозначим проекции точек М1 и М2 на ось Ох через А1 и A2, тогда ОА1 = х1, ОА2 = х2, А1М1= у1, А2М2 = у2. Проведем из точки В прямую, параллельную оси Ох. При этом получим b = ОВ = А1Р1 = А2Р2.

Предположим, что точки BМ1 и М2 не лежат народной прямой. Соединяя точку В с точками М1 и М2, получим два прямоугольных треугольника ВР1М1 и ВР2М2, из которых имеем:

Решение уравнений по функции y kx

Но так как х1, у1 и х2, у2 удовлетворяют уравнению (1), то

Решение уравнений по функции y kx

Решение уравнений по функции y kx

Выражения Решение уравнений по функции y kxи Решение уравнений по функции y kxявляются отношениями противоположных катетов к прилежащим для уг лов Решение уравнений по функции y kxР1ВМ1 и Решение уравнений по функции y kxР2ВМ2. Следовательно, tg Решение уравнений по функции y kxР1ВМ1 = Решение уравнений по функции y kxи tg Решение уравнений по функции y kxР2ВМ2 = Решение уравнений по функции y kx, а поэтому и Решение уравнений по функции y kxР1ВМ1 = Решение уравнений по функции y kxP2BM2 так как углы острые. Это значит, что точки М2 и В лежат на одной прямой. Но мы предположили, что эти точки не лежат на одной прямой. Таким образом, мы пришли к противоречию, а это и доказывает, что точки M1, М2 и В лежат на одной прямой. Обозначим угол Р1ВМ1 через а. Этот угол образован прямой ВМ1 с положительным направлением оси Ох.

Так как М1 и М2 — произвольные точки, координаты которых удовлетворяют уравнению (1), то можно сделать следующее заключение: любая точка, координаты которой удовлетворяют уравнению (1), лежит на прямой, отсекающей на оси Оу отрезок ОВ = b и образующей с положительным направлением оси Ох угол а такой, что tg a = Решение уравнений по функции y kx.

Число b называется начальной ординатой, число Решение уравнений по функции y kx— угловым коэффициентом прямой.

Предыдущие рассуждения позволяют сделать вывод: линейная функция y = Решение уравнений по функции y kxx + b определяет на плоскости прямую, у которой начальная ордината равна Ъ, а угловой коэффициент Решение уравнений по функции y kx.

Например, линейная функция Решение уравнений по функции y kxопределяет на координатной плоскости прямую, отсекающую на оси Оу отрезок —4 и наклоненную к оси Ох под углом в 60°, так как tg60° = Решение уравнений по функции y kx.

Если имеем определенную прямую, отсекающую на оси Оу отрезок b и наклоненную к оси Ох под углом Решение уравнений по функции y kx, тангенс которого равен то, взяв произвольную абсциссу, найдем на указанной прямой только одну точку, имеющую эту абсциссу, т. е. по заданному х найдется только одна точка, а следовательно, и одно значение у.

Очевидно, имеет место и такое предложение:

Всякой прямой, отсекающей на оси Оу отрезок b и наклоненной к оси Ох под углом, тангенс которого равен числу Решение уравнений по функции y kxсоответствует линейная функция y = Решение уравнений по функции y kxx + b.

Координаты любой тонки, лежащей на указанной прямой, удовлетворяют уравнению (1), поэтому уравнение у = Решение уравнений по функции y kxх + b называют уравнением прямой. Таким образом, всякая линейная функция является уравнением некоторой прямой.

Отметим частные случаи.

1.Пусть b = 0, т. е. линейная функция определяется уравнением

Решение уравнений по функции y kx

Прямая, определяемая этим уравнением, проходит через начало координат. Здесь у пропорционален х, т. е. если х увеличить (уменьшить) в несколько раз, то и у увеличится (уменьшится) во столько же раз.

2.Пусть Решение уравнений по функции y kx= 0, т. е. tgа = 0, откуда а = 0. Линейная функция определяется уравнением

Решение уравнений по функции y kx

Этому уравнению соответствует прямая, параллельная оси Ох и отстоящая от нее на расстояние b.

На основании всего сказанного в этом параграфе легко решаются следующие задачи.

Задача:

Даны точки А (3, 5) и В(— 1, 4). Нужно узнать, лежат ли эти точки на прямой, уравнение которой имеет вид

Решение уравнений по функции y kx

Решение:

Если точка лежит на прямой, то ее координаты должны удовлетворять уравнению прямой. Поэтому для решения задачи подставим координаты точки А в уравнение (*), получим 5 = 2 x 3 — 1. Это тождество, следовательно, точка А лежит на прямой. Подставляя координаты точки В, получаем 4 = 2(— 1)—1 = —3. Отсюда видно, что точка В не лежит на прямой.

Задача:

Построить прямую, уравнение которой

Решение уравнений по функции y kx

Решение:

Чтобы построить прямую, надо знать, например, две ее точки. Поэтому дадим х произвольное значение, например х = 2, и найдем из уравнения (**) значение

Решение уравнений по функции y kx

Значит, точка A (2, 4) лежит на прямой.

Это первая точка. Теперь дадим х какое-нибудь другое значение, например х = —2, и вычислим у из уравнения (**).

Решение уравнений по функции y kx

Точка B ( — 2, 2) лежит на прямой. Это вторая точка. Строим точки A и B (рис. 15) и проводим через них прямую, это и есть искомая прямая.

Решение уравнений по функции y kx

Видео:Вариант 51, № 7. Нахождение k и b линейной функции y=kx+b. Пример 1Скачать

Вариант 51, № 7. Нахождение k и b линейной функции y=kx+b. Пример 1

Основное свойство линейной функции

Рассмотрим линейную функцию у = Решение уравнений по функции y kxх + b. Найдем значение этой функции при

Решение уравнений по функции y kx

Здесь первое и второе значения х различны, они отличаются друг от друга на величину х2 — х1. Величину разности х2 — х1, на которую изменяется x при переходе от x1 к х2, назовем приращением независимого переменного х. Эту величину часто будем обозначать через h, так что h = x2 — x1. Найдем, насколько изменилось значение у при изменении х1 на h . Для этого вычтем из у2 значение у1

Решение уравнений по функции y kx

Решение уравнений по функции y kx

т. е. приращение линейной функции пропорционально приращению независимого переменного.

Это и есть основное свойство линейной функции. Заметим, что х2 может быть больше, а может быть и меньше, чем х1. Поэтому h = x2 — x1 может быть как положительным, так и отрицательным числом, иначе говоря, приращение h независимого переменного может быть любого знака. То же самое относится и к приращению функции, т. е. к величине у2—у1.

Пример:

Найдем приращение функции y = 0,6x—3, если приращение независимого переменного h = 0,1.

По основному свойству у2—у1 = 0,6 x 0,1 = 0,06.

Приращение этой же функции y = 0,6x—3 , если h = —3, будет равно у2—у1 = 0,6 x (— 3) = —1,8. В этом случае приращения независимого переменного и функции отрицательны, т. е. в этом случае и независимое переменное и функция не увеличиваются, а уменьшаются.

Пример:

Найдем приращение функции у = —2x+10 при изменении х на h = —0,5. Будем иметь

Решение уравнений по функции y kx

Видео:Алгебра 7 класс. 8 октября. y=kxСкачать

Алгебра 7 класс. 8 октября. y=kx

Задачи на прямую

Задача:

Найти угол y между двумя прямыми, заданными уравнениями

Решение уравнений по функции y kx

Решение:

При пересечении прямых образуются четыре попарно равных угла. Найдя один из них, легко найти и другие. На рис. 16 прямые обозначены соответственно (1) и (2).

Решение уравнений по функции y kx

Угол хАВ является внешним по отношению к треугольнику ABC, поэтому он равен сумме двух внутренних углов треугольника, с ним не смежных, т. е.

Решение уравнений по функции y kx

Решение уравнений по функции y kx

Но углы а1 и а2 непосредственно неизвестны, а известны их тангенсы

Решение уравнений по функции y kx

Решение уравнений по функции y kx

Решение уравнений по функции y kx

Пример:

Найти угол между прямыми, заданными уравнениями

Решение уравнений по функции y kx

Решение уравнений по функции y kx

применяя формулу (1), получим;

Решение уравнений по функции y kx

Если же будем считать, что

Решение уравнений по функции y kx Решение уравнений по функции y kx

Получены два ответа: сначала найден острый угол между заданными прямыми, а затем — тупой.

Если заданы две параллельные прямые, то углы а1 и а2 равны, как соответственные, следовательно, тангенсы их тоже равны

Решение уравнений по функции y kx

Таким образом, мы приходим к выводу: если прямые параллельны, то их угловые коэффициенты равны.

Если прямые перпендикулярны, то угол между ними равен 90°, т. е. Решение уравнений по функции y kx. Но тангенс прямого угла не существует, поэтому формула (1) не должна давать ответа, а это может быть только в том случае, когда знаменатель равен нулю (на нуль делить нельзя):

Решение уравнений по функции y kx

Это и есть условие перпендикулярности двух прямых. Это условие удобно запомнить в следующей формулировке: если две прямые перпендикулярны, то их угловые коэффициенты обратны по величине и противоположны по знаку.

Пример:

Найдем угол между прямыми, заданными уравнениями

Решение уравнений по функции y kx

Здесь угловые коэффициенты (первый равен 3, а второй Решение уравнений по функции y kxобратны по величине и противоположны по знаку, следовательно, рассматриваемые прямые перпендикулярны.

Задача:

Даны две точки: M1(x1, у1) и М2(х2, у2), где Решение уравнений по функции y kx(т. е. эти точки не лежат на одной прямой, параллельной оси Оу). Написать уравнение прямой, проходящей через точки M1 и М2.

Решение:

Искомая прямая не параллельна оси Оу, поэтому ее уравнение можно написать в виде Решение уравнений по функции y kxЗначит, для решения задачи надо определить числа Решение уравнений по функции y kxи b.

Так как прямая проходит через точки М1 и М2, то координаты этих точек должны удовлетворять уравнению ( * ), т. е.

Решение уравнений по функции y kx

В уравнениях ( ** ) и (*** ) все числа, кроме Решение уравнений по функции y kxи b, известны, поэтому эти уравнения можно рассматривать как систему уравнений относительно Решение уравнений по функции y kxи b. Решая систему, находим:

Решение уравнений по функции y kx

Подставляя найденные выражения в уравнение (*), получим

Решение уравнений по функции y kx

Это и есть уравнение прямой, проходящей через две точки, не расположенные на прямой, параллельной оси Оу.

Полученному уравнению можно придать форму, удобную для запоминания, а именно:

Решение уравнений по функции y kx

Решение уравнений по функции y kx

Задача:

Написать уравнение прямой, проходящей через данную точку М(х1,у1) и образующей с осью Ох угол а.

Решение:

Прежде всего найдем угловой коэффициент искомой прямой: он равен тангенсу угла а. Обозначим Решение уравнений по функции y kxЗначит, уравнение прямой можно написать в виде Решение уравнений по функции y kxгде пока число b неизвестно. Так как прямая должна проходить через точку M, то координаты точки М удовлетворяют этому уравнению, т. е.

Решение уравнений по функции y kx

Находим отсюда неизвестное b, получим Решение уравнений по функции y kx. Подставляя найденное в уравнение (*), будем иметь

Решение уравнений по функции y kx

Это и есть уравнение прямой, проходящей через точку М в заданном направлении.

Если в уравнении (4) менять направление, не меняя точку M, то получим уравнение всех прямых, проходящих через заданную точку. Уравнение Решение уравнений по функции y kx, в котором Решение уравнений по функции y kxпеременное, а х1 и у1 не меняются, называется уравнением пучка прямых, проходящих через точку М(х1, у1).

Пример:

Напишем уравнение прямой, проходящей через точку М( — 2, 3) и образующей с осью Ох угол 45°.

Так как tg 45° = 1, то угловой коэффициент равен 1; х1 = —2; у1 = 3. Уравнение прямой запишется в виде

Решение уравнений по функции y kx

Решение уравнений по функции y kx

Видео:Линейная функция и ее график. 7 класс.Скачать

Линейная функция и ее график. 7 класс.

Общее уравнение прямой. Неявная линейная функция

Рассмотрим уравнение первой степени с двумя неизвестными

Решение уравнений по функции y kx

Решим его относительно у:

Решение уравнений по функции y kx

т. е. мы получили линейную функцию, где Решение уравнений по функции y kx,Решение уравнений по функции y kxУравнения (1) и (2) равносильны, поэтому пара чисел х и у, удовлетворяющих уравнению (2), будет удовлетворять и уравнению (1). Так как уравнению (2) соответствует некоторая прямая, то эта же прямая будет соответствовать и уравнению (1).

Координаты любой точки, лежащей на этой прямой, удовлетворяют уравнению (1), поэтому будем называть его также уравнением прямой.

Рассмотрим особо случай, когда B = 0, так как на нуль делить нельзя.

Уравнение (1) примет вид

Решение уравнений по функции y kx

Решение уравнений по функции y kx

Решение уравнений по функции y kx

Поэтому, каков бы ни был у, х всегда равен Решение уравнений по функции y kxЭто имеет место для прямой, параллельной оси Оу; в самом деле, на ней можно найти точку с любой ординатой, но все точки этой прямой имеют одну и ту же абсциссу.

Таким образом, любому уравнению первой степени соответствует некоторая прямая. Придавая в уравнении (1) коэффициентам А, В и С различные значения, можно получить любое уравнение первой степени. Поэтому уравнение (1) называют общим уравнением прямой.

Из уравнения (1) (если Решение уравнений по функции y kx) можно определить у, т. е. получить линейную функцию; поэтому говорят, что уравнение (1) определяет неявно линейную функцию или что уравнение (1) есть неявная линейная функция.

Видео:функция y=k/x и ее график (гипербола) - 8 класс алгебраСкачать

функция y=k/x и ее график (гипербола) - 8 класс алгебра

Система двух уравнений первой степени

Напомним, что две прямые, расположенные на плоскости, могут или пересекаться, или быть параллельными (т. е. не пересекаться), или сливаться (в этом случае можно сказать, что они пересекаются в каждой своей точке).

Рассмотрим систему двух уравнений

Решение уравнений по функции y kx

Каждое из этих уравнений является уравнением прямой. Решить систему — это значит найти значения х и у, которые удовлетворяют и первому и второму уравнениям. Но так как х и у определяют точку, то следовательно, решить систему—это значит найти точку, лежащую и на первой и на второй прямых, т. е. найти точку пересечения прямых.

Пример:

Найдем точку пересечения двух прямых:

Решение уравнений по функции y kx

Решая эту систему, получим: х = 1, у = 2, т. е. прямые пересекаются в точке (1,2) (рис. 17).

Решение уравнений по функции y kx

Пример:

Найдем точку пересечения двух прямых:

Решение уравнений по функции y kx

Решая эту систему, получим:

Решение уравнений по функции y kx

Последнее равенство нелепо, значит, прямые не пересекаются, Рис. 17. т. е. они параллельны.

Пример:

Найдем точку пересечения данных прямых

Решение уравнений по функции y kx

Решая эту систему, получим:

Решение уравнений по функции y kx

Полученное равенство всегда справедливо, т. е. справедливо при любом значении x. Это значит, что две прямые пересекаются в каждой своей точке, что может быть только тогда, когда они сливаются.

Заметим, что два уравнения, рассматриваемые в этом примере, являются равносильными, поэтому они и представляют одну и ту же прямую.

Видео:ЛИНЕЙНАЯ ФУНКЦИЯ | 7 класс Макарычев | график функции y=kx+bСкачать

ЛИНЕЙНАЯ ФУНКЦИЯ | 7 класс Макарычев | график функции y=kx+b

Примеры решения линейной функции

Линейная функция встречается в формулировках многих физических законов и технических задач. Приведем примеры.

Пример:

Если точка движется равномерно по прямой, то ее расстояние от выбранной точки (от начала координат) выражается при помощи уравнения Решение уравнений по функции y kx

где — начальное расстояние, v0 — скорость, t — время; это, как мы уже знаем, есть линейная функция.

Пример:

Закон Ома записывается в виде Решение уравнений по функции y kx

где v — напряжение, R — сопротивление и I — ток. Если не изменяется, то v является линейной функцией тока I .

Пример:

Если стоимость провоза единицы товара по железной дороге равна а руб. за километр, то стоимость v провоза N единиц товара на l км равна Решение уравнений по функции y kx

Если же стоимость товара на месте равна М руб., то после перевозки за него надо заплатить

Решение уравнений по функции y kx

Здесь v—линейная функция l.

Линейная функция встречается в различных областях, но, где бы она ни встречалась, ее всегда можно рассматривать как уравнение прямой. Этим обстоятельством часто пользуются при решении задач.

Задача:

Два города А и В, расстояние между которыми равно 300 км, находятся на одной железнодорожной магистрали. На этой же магистрали между городами А и В надо выбрать пункт С, в котором предполагается устроить склад нефти для снабжения указанных городов. Надо выбрать пункт С так, чтобы общая стоимость перевозок нефти для снабжения города А и города В была наименьшей. Известно, что город А потребляет 400 т нефти, а город В—200 т. Перевозка одной тонны нефти на один километр обходится в а руб.

Решение:

Обозначим расстояние от А до предполагаемого пункта С через х. Тогда расстояние от города В до С равно 300 — х. Стоимость перевозки одной тонны нефти из С в A равна ах руб., а перевозки 400 т—400аx руб. Аналогично перевозка нефти из С в В будет стоить 200а (300 — х) руб. Стоимость всех перевозок, которую обозначим через у, будет выражаться так:

Решение уравнений по функции y kx

Решение уравнений по функции y kx

Это линейная функция. Если примем х за абсциссу, а у за ординату точки, то полученная линейная функция определяет уравнение некоторой прямой. Угловой коэффициент ее равен 200а, т. е. положителен, следовательно, эта прямая образует с осью Ох острый угол и поэтому с увеличением независимого переменного поднимается вверх. По смыслу задачи величина х заключена между 0 и 300, т. е. Решение уравнений по функции y kxПри х = 0 величина у принимает значение 60 000а, а при x = 300— значение 120 000а. Ясно, что 60 000а есть наименьшее из возможных значений, 120 000а— наибольшее.

Так как пункт С надо выбрать так, чтобы стоимость была наименьшей, то его следует расположить в городе A, если же этого сделать нельзя по каким-либо соображениям, то, чем ближе расположить его к A, тем выгодней.

Видео:Построение графика линейной функции y=kx+bСкачать

Построение графика линейной функции y=kx+b

Примеры применения линейной функции

Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Решение уравнений по функции y kx

Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx Решение уравнений по функции y kx

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

💡 Видео

ЛИНЕЙНАЯ ФУНКЦИЯ y=kx график линейной функции 7 и 8 классСкачать

ЛИНЕЙНАЯ ФУНКЦИЯ y=kx график линейной функции 7 и 8 класс

Линейная функция и её график. Алгебра, 7 классСкачать

Линейная функция и её график. Алгебра, 7 класс

Линейная Функция — как БЫСТРО построить график и получить 5-куСкачать

Линейная Функция — как БЫСТРО построить график и получить 5-ку

Задание 5 Знаки коэффициентов k и b в формуле линейной функции y=kx+bСкачать

Задание 5  Знаки коэффициентов k и b в формуле линейной функции y=kx+b

Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:
Поделиться или сохранить к себе: