Данный онлайн калькулятор находит корень уравнения приближённо. В основе алгоритма его работы лежит метод Ньютона. Чтобы начать работу, необходимо ввести исходные данные своей задачи.
Методом Ньютона, найти корень (
максимальное кол-во итераций:
критерий останова вычислений:
Метод Ньютона является численным, т.е. корень уравнения находится приближенно. При этом можно заранее задать точность его нахождения.
Пусть нам дано уравнение
Формула для поиска корня уравнения выглядит следующим образом:
и — приближённые значения корня уравнения на -ой и ( )-ой итерациях соответственно, — значение функции в точке , — значение производной функции в точке .
Как видно, для того чтобы начать работу необходимо задать точку — начальное приближение для корня уравнения . От выбора точки зависит сойдётся ли алгоритм к решению или нет. Сходимость метода квадратичная, но она резко ухудшается если мы ищем кратный корень уравнения, т.е. если и одновременно , где — кратный корень уравнения .
Вычисления по приведённой выше формуле можно продолжать до бесконечности, соответственно на практике необходим некоторый критерий, который будет определять нужно ли нам продолжать вычисления или нет. Как правило, используется критерий останова вычислений на основе приращения или же на основе близости функции к нулю в некоторой точке .
Критерий останова вычислений на основе приращения задаётся следующей формулой:
т.е. различие (по модулю) между двумя последовательными приближениями к корню уравнения ( и ) должны быть меньше, некоторой наперёд заданной величины .
Критерий останова вычислений на основе близости функции к нулю определяется следующей формулой:
т.е. отличие (по модулю) между функцией в некоторой точке и нулём меньше .
В тоже время, если последовательность к корню не сходится, то критерии останова не сработают и процесс поиска корня будет продолжаться бесконечно. Чтобы предотвратить такую ситуацию, на практике вычисления прекращают после некоторого, заданного количества итераций.
На рисунке ниже приведена геометрическая интерпретация процесса поиска корня уравнения методом Ньютона.
В точке мы строим касательную к графику функции . Уравнение касательной в этой точке имеет вид:
Находим точку пересечения полученной касательной с осью абсцисс, т.е. рассматриваем точку с координатами . Подставляя координаты указанной точки в уравнение касательной, получаем следующее соотношение:
Из данного уравнения находим :
Продолжая данный процесс, получим формулу метода Ньютона, приведенную выше. Из-за того, что на каждой итерации фактически происходит построение касательной, метод Ньютона также иногда называют методом касательных.
Видео:Численное решение уравнений, урок 3/5. Метод хордСкачать
Другие полезные разделы:
Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать
Оставить свой комментарий:
Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме
Видео:Математика | Решение уравненийСкачать
Метод Рунге — Кутты
Этот онлайн калькулятор реализует классический метод Рунге — Кутты (встречается также название метод Рунге — Кутта) четвертого порядка точности. Метод используется для решения дифференциальных уравнений первой степени с заданным начальным значением
Калькулятор ниже находит численное решение дифференциального уравнения первой степени методом Рунге-Кутты (иногда встречается название метод Рунге-Кутта, а в поисковиках бывает ищут «метод рунге кута», «метод рунги кутта» и даже «метод рунги кута»), который также известен как классический метод Рунге — Кутты (потому что есть на самом деле семейство методов Рунге-Кутты) или метод Рунге — Кутты четвертого порядка.
Для того, чтобы использовать калькулятор, вам надо привести дифференциальное уравнение к форме
и ввести правую часть уравнения f(x,y) в поле y’ калькулятора.
Также вам понадобится ввести начальное значение
и указать точку в которой вы хотите получить численное решение уравнения .
Последнее параметр калькулятора — размер шага с которым вычисляется следующее приближение по графику функции.
Описание метода можно найти под калькулятором.
Видео:Повторяем решение уравнений. Полезно всем! Вебинар | МатематикаСкачать
Численные методы решения нелинейных уравнений
В этом разделе приведены примеры решенных задач по теме нахождения корней нелинейных уравнений численными методами. На первом этапе обычно происходит локализация (отделение) корней (графически или аналитически), на втором — уточнение (поиск) корней разными методами: Ньютона, Стеффенсена, секущих, хорд, касательных, простой итерации.
Видео:Решение системы уравнений методом ГауссаСкачать
Примеры приближенных решений нелинейных уравнений онлайн
Задача 1. Методом бисекции найти решение нелинейного уравнения на отрезке $[a;b]$ с точностью $varepsilon = 10^$. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью $varepsilon=10^$. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.
Задача 2. Отделить корни нелинейного уравнения аналитически $2 arcctg x -x+3=0$.
Задача 3. Отделить корни нелинейного уравнения аналитически и уточнить один из них методом проб с точностью до 0,01. $$3x^4-8x^3-18x^2+2=0.$$
Задача 4. Отделить корни нелинейного уравнения графически (например, в среде EXCEL) уточнить один из них методом проб с точностью до 0,01. $$x^2-20 sin x =0.$$
Задача 5. Отделите корни уравнения графически и уточните один из них методом хорд с точностью до 0,001. Уточните один из корней этого уравнения методом касательных с точностью до 0,001. $$ sqrt — cos 0.387 x =0.$$
Задача 6.Отделить корни уравнения графически и уточнить один из них методом итераций с точностью до 0,001. $$sqrt=frac.$$
Задача 7. На отрезке $[0;2]$ методом Ньютона найти корень уравнения $-x^3-2x^2-4x+10=0$ с точностью 0,01.
Задача 8. Методом хорд найти отрицательный корень уравнения $x^3-2x^2-4x+7=0$ с точностью 0,0001. Требуется предварительное построение графика функции и отделение корней.
Задача 9. Решить нелинейные уравнения с точностью до 0.001. $$1), x^3-12x-5=0, (x gt 0), , 2), tan x -1/x=0. $$
💥 Видео
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Решение биквадратных уравнений. 8 класс.Скачать
10 Численные методы решения нелинейных уравненийСкачать
Математика без Ху!ни. Метод Гаусса.Скачать
Метод простых итераций пример решения нелинейных уравненийСкачать
5.1 Численные методы решения уравнений F(x)=0Скачать
14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Решение уравнений, 6 классСкачать
Решение уравнений. Видеоурок 28. Математика 6 классСкачать
18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать