Архивы
Видео:Виды уравнений. Свойства уравнений. Перенос слагаемых из одной части уравнения в другую. Алгебра 7.Скачать

Перенос слагаемого
Перенос слагаемого
Одним из наиболее часто используемых действий при решении уравнений в алгебре является перенос слагаемого. Общее правило гласит, что слагаемое можно перенести из одной части равенства в другую с переменой знака. Так, для равенства
перенос разных слагаемых выглядит следующим образом:
В исходном равенстве у a, b и c положительный знак, и они переносятся со знаком «минус», а d имеет отрицательный знак, поэтому, при переносе знак меняется на противоположный, «плюс».
При решении уравнений часто переносят подобные слагаемые из левой части уравнения в правую и наоборот.
Пример
Сделаем в уравнении
3x-7y+4+x=y ⇒ 4x-7y+4=y ⇒ 4x=y+7y-4 ⇒ 4x=8y-4 ⇒ x=2y-1
-7y+4=-x+y-3x ⇒ -7y-y=-4x-4 ⇒ -8y=-4x-4 ⇒ y=1/2 x+1/2
Видео:Решение уравнений. Как переносить слагаемые из одной части уравнения в другую. Математика 6 классСкачать

Линейные уравнения. Решение линейных уравнений. Правило переноса слагаемого.
Правило переноса слагаемого.
При решении и преобразовании уравнений зачастую возникает необходимость переноса слагаемого на другую сторону уравнения. Заметим, что слагаемое может иметь как знак «плюс», так и знак «минус». Согласно правилу, перенося слагаемое в другую часть уравнения, нужно изменить знак на противоположный. Кроме того, правило работает и для неравенств.
Примеры переноса слагаемого:
Сначала переносим 5x из левой части уравнения в правую:
Далее переносим (−6) из правой части в левую:
Обратите внимание, что знак «+» изменился на «-», а знак «-» на «+». При этом не имеет значения, переносимое слагаемое число или переменная, либо выражение.
Переносим 1-е слагаемое в правую сторону уравнения. Получаем:
Обратите внимание, что в нашем примере слагаемое — это выражение (−3x 2 (2+7x)). Поэтому нельзя отдельно переносить (−3x 2 ) и (2+7x), так как это составляющие слагаемого. Именно поэтому не переносят (−3x 2 ⋅2) и (7x). Однако мы модем раскрыть скобки и получить 2 слагаемых: (−3x‑⋅2) и (−3×2⋅7x). Эти 2 слагаемых можно переносить отдельно друг от друга.
Таким же образом преобразовывают неравенства:
Собираем каждое число с одной стороны. Получаем:
2-е части уравнения по определению одинаковы, поэтому можем вычитать из обеих частей уравнения одинаковые выражения, и равенство будет оставаться верным. Вычитать нужно выражение, которое в итоге нужно перенести в другую сторону. Тогда по одну сторону знака «=» оно сократится с тем, что было. А по другую сторону равенства выражение, которое мы вычли, появится со знаком «-».
Это правило зачастую используется для решения линейных уравнений. Для решения систем линейных уравнений используются другие методы.
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

Основные приемы решения уравнений.
1. Перенос слагаемых из одной части уравнения в другую.
Переход от уравнения
f(x) = g(x) + m(x) (1)
к уравнению
f(x) — m(x) = g(x) (2)
называют переносом слагаемых из одной части уравнения в другую.
Перенос слагаемых из одной части уравнения в другую — это преобразование уравнения всегда приводит к равносильному уравнению, т. е., каковы бы ни были функции f(х), m(х), g(x), мы имеем (1)
В самом деле, пусть a — корень уравнения (1), т. е. соотношение
f(a) + m(a) = g(a) = g(a) + m(a) (3)
представляет собой верное числовое равенство. Это означает, что ринадлежит области определения каждой из функций f<x), m(x), g(x), т. е. определены числа f(a), m(a), g(a), и
2) эти числа связаны соотношением (3).
Прибавляя к обеим частям равенства (3) число -m(a), получаем
f(a) — m(a)+ m(a) = g(a) — m(a),
или
f(a) = g(a) — m(a) — m(a) = g(a) (4)
(поскольку для любого числа b = m(a) верно b — b = 0). Таким образом, (4) есть верное числовое равенство. Но это означает, что a есть корень уравнения (2). Итак, каждый корень уравнения (1) является также корнем уравнения (2), т. е. (1)

В частности, мы можем, если нужно, перенести все слагаемые в одну часть уравнения. Иначе говоря,
f(x) = g(x) 
что является частным случаем эквивалентности (1)
Подчеркнем, что в этом пункте шла речь только о перенесении членов из одной части уравнения в другую без последующего приведения подобных членов (если таковые имеются).
Приведение подобных членов является новым преобразованием (которое может вызвать появление посторонних корней).
2. Приведение подобных членов.
Переход от уравнения
f(x) + m(x) — m(x) = g(x) (5)
к уравнению
f(x) = g(x) (6),
называют приведением подобных слагаемых.
Прежде чем рассматривать переход от уравнения (5) к уравнению (6), сделаем следующее замечание. Согласно сказанному в предыдущем пункте уравнеПрежде чем рассматривать переход от уравнения (5) к уравнению (6), сделаем следующее замечание. Согласно сказанному в предыдущем пункте уравнение (5) равносильно уравнению
f(x) + m(x) = g(x) + m(x) (7).
Поэтому переход от уравнения (1) к уравнению (2) означает то же самое, что и переход от уравнения ( 7 ) к уравнению (2), т. е. во всех рассуждениях уравнение (1) можно заменять равносильным ему уравнением (7). Таким образом, сказанное в этом пункте будет относиться не только к приведению подобных членов в одной части уравнения, но и к вычеркиванию (взаимному уничтожению) одинаковых слагаемых в левой и правой частях. Прежде чем сформулировать общее утверждение, относящееся к переходу от уравнения (1) к уравнению (2) или, что то же самое, от уравнения (7) к уравнению (2), рассмотрим следующие примеры.
Пример 1.
Пример 2.
x 2 + lgx = x + lgx 
Обозначим через М множество, на котором определены функции f(х) и g(x), стоящие в левой и правой частях уравнения f(x) = g(x) (т.е. пересечение областей определения функций f (х) и g(x). Тогда, если множество М содержится в области определения функции m(х), то уравнение f(x) + m(x) — m(x) = g(x) равносильно уравнению f(x) =g(x). При этих условиях f(x) + m(x) = g(x) + m(x)
3. Умножение обеих частей уравнения на одно и то же выражение.
Переход от уравнения
f(x) = g(x) (8)
к уравнению
f(x)

называют умножением обеих частей уравнения на одно и тоже выражение.
По поводу этого перехода можно высказать следующие утверждения:
1) Если в каждой точке, где определены обе функции f(x), g(x) определена также и функция p(x) (иначе говоря, Если в каждой точке, где определены обе функции f(x), g(x) определена также и функция p(x)), то уравнение (9) является следствием уравнения (8) или (8)
2) Если в каждой точке, где определены обе функции f(x), g(x) определена также и функция p(x) и в каждой точке указанного множества функция p(x) отлична от нуля, то уравнения (8) и (9) равносильны, т. е. (8)
Заметим, что в общем случае переход от уравнения (9) к уравнению (8) может привести как к появлению посторонних корней, так и к потере корней.
Рассмотрим уравнение x 2 — x = 0. Умножив обе части этого уравнения на


Такой переход применяется довольно часто при решении уравнений. Естественно, возникает вопрос: можно ли утверждать, что уравнение (*) равносильно дизъюнкции уравнений (**)
Иными словами, можно ли получить «множество всех корней уравнения (*), решив все уравнения (**) и объединив их корни? Ответ на этот вопрос дает следующая теорема.
Эта теорема лежит в основе часто применяемого метода разложения уравнения на множители.
Пример 4. x 6 + 3x 5 — x 4 — 3x 3 = 0,
x 3 (x 3 + 3x 2 — x — 3) =0,
x 3 ((x 3 + 3x 2 ) — (x + 3)) =0,
x 3 (x 2 (x + 3) — (x + 3)) =0,
x 3 (x + 3)(x 2 — 1) =0,
x 3 (x + 3)(x — 1)(x + 1) =0.
Уравнение x 6 +3x 5 — x 4 — 3x 3 = 0 равносильно дизъюнкции уравнений x 3 = 0, x + 3 =0, x + 1 = 0, x — 1 = 0 и имеет следующие корни:
Следующий пример показывает, что в общем случае уравнение (*) не равносильно дизъюнкции уравнений (**).
Пример 5. Пусть f1(х) = х 2 — 1, f2(х) =
Теорема 2. Каждый корень уравнения f1(x)·f2(x)·. ·fn(x) = 0 является корнем одного из уравнений f1(x) = 0, f2(x) = 0. fn(x) = 0.
Иначе говоря, дизъюнкция уравнений (**) есть следствие уравнения (*). Из этой теоремы вытекает, что если мы найдем все корни уравнений (**), то среди этих корней будут содержаться все корни уравнения (*) и, быть может, некоторые числа, не являющиеся корнями уравнения (*). Посторонними для уравнения (*) будут те значения х, полученные при решении уравнений (**), для которых хотя бы одна из функций f1(х), f2(x), . fn(x) не определена.
3 а м е ч а н и е. Выше было отмечено, что переход от уравнения
f(x)p(x) = g(x)p(x) к уравнению f(x) = g(x) в общем случае недопустим.
При решении уравнения обычно поступают так. Вместо уравнения
f(x)p(x) = g(x)p(x) рассматривают уравнение (f(x)-g(x))p(x)=0, которое эквивалентно исходному уравнению, т. е. уравнению f(x)p(x) = g(x)p(x).
В свою очередь дизъюнкция уравнений f(x) — g(x) = 0, p(x) = 0 является следствием уравнения (f(x) — g(x))p(x) = 0. Таким образом, если мы решим уравнения f(x) — g(x) = 0, p(x) = 0, а звтем объединим их корни, и проверкой (подстановкой в уравнение (f(x)p(x) = g(x)p(x) отсеем лишние корни, то тем самым мы найдем все корни искомого уравнения.
Пример 6. sinx·ctg2x·arcsin(x — 1)·lg(x — 1) = 0.
Решая каждое уравнение в отдельности, имеем следующее:
sinx = 0, корни этого уравнения x =

ctg2x = 0, корни этого уравнения: x =


arcsin(x — 1) = 0, корни этого уравнения: x = 1;
lg(x — 1) = 0, корни этого уравнения: x = 2
Те из этих корней, которые принадлежат области определения левой части исходного уравнения, являются корнями исходного урапвнения.
Запишем области определения функций:
M1 = D(sinx) = (-

M2 = D(ctg2x) = (-




M4 = D(lg(x — 1)) = (1; +
Область определения M левой части исходного уравнения является пересечение множеств M1, M2, M3, M4.
M = (1; 


5. Переход от уравнения f(x)= g(x) к уравнению [f(х)] n = [g(х)] n . Такой переход нередко используется при решении уравнений, особенно при решении иррациональных уравнений.
Пусть функции f(х) и g(x) определены на множестве М (т. е. множество М содержится в области определения каждой из функций f(x), g(x)) и n — произвольное натуральное число. Будем предполагать, что М — некоторое множество действительных чисел и что на этом множестве функции f (х) и g(x) принимают действительные значения. Мы можем утверждать следующее:
В общем случае переход от уравнения [f(x>] n = [g(x)] n к уравнению f(x) = g(x) не допустим, так как такой переход может привести к потере корней.
Пример 7. Решите уравнение
Решение. Возводя обе части уравнения в квадрат, получим уравнение
2x 2 + 5x — 3 = x 2 + 2x + 1, являющееся следствием уравнения. Полученное уравнение равносильно уравнению х 2 + 3х — 4 = 0, корнями которого являются числа х1 = -4, х2 = 1. Проверка показывает, что корень x1 = — 4 является посторонним для уравнения исходного иррационального уравнения, а корень х2= 1 удовлетворяет уравнению обоим уравнениям. Таким образом, уравнение исходное заданное уравнение имеет единственный корень х = 1.
Более общим, чем рассмотренный в пятом примере, является переход от уравнения f(x) = g(x) к уравнению m(f(x)) = m(g(x)), где m(t) — некоторая заданная функция. Заметим сразу, что в общем случае такой переход недопустим. В самом деле, пусть Е1 и Е2,—множества значений соответственно функций f(x) и g(x) и Е — общая часть (т. е. пересечение) множеств E1 и Е2. Если функция m(t) не определена на множестве Е, то уравнение m(f(x)) = m(g(x))не имеет решений, в то время как исходное уравнение могло иметь решения. Если же множество Е содержится в области определения функции m(t), то, как легко доказать, f(x) = g(x)

Пример 8. Уравнение — x 4 = — x 2 имеет корни х1 = 0, x2 = 1, х3 = — 1, а уравнение
lg(-х 2 ) = lg(-х 4 ) не имеет решений. Произошло это потому, что обе функции
f<x)= -x 2 , g(x) = — x 4 принимают значения, принадлежащие множеству Е = (-
6. Метод замены неизвестного. Метод замены неизвестного применяется при решении уравнений вида f(g(x)) = 0.
Он основывается на следующей теореме.
Теорема 3. Рассмотрим уравнение f(t) = 0, где t — вспомогательное неизвестное, и пусть t1, t2,3. tk — все корни уравнения. Тогда для решения уравнения f(g(x)) = 0 достаточно найти все корни каждого из уравнений g(x) = tm (m = l, 2, . k) и объединить множества корней этих уравнений.
Иначе говоря, f(g(x)) = 0
Эта теорема позволяет свести решение уравнения вида f(g(x))= 0 к решению нескольких более простых уравнений f(t) = 0, g(x) = tk, где k = 1, 2. m.
Обычно эта теорема применяется следующим образом.
Дано некоторое уравнение f(x) = 0. Задача заключается в том, чтобы умело подобрать функцию g(x), позволяющую ввести новое неизвестное t = g(x), и затем выразить функцию f(х) через t, т. е. представить ее в виде f(x) = h(g(x)). В результате данное уравнение запишется в виде h(g(x))= 0, и для его решения можно будет применить доказанную теорему. Такой прием решения уравнений и называется методом замены неизвестного (поскольку вначале решается уравнение f(t) = 0, в котором неизвестное х заменено новым, вспомогательным неизвестным t.
Пример 9. Решить уравнение х 2 +

Введем новое неизвестное t = х —
Тогда заданное уравнение примет вид t 2 — t = 0.
Уравнение t 2 — t = 0 имеет корни t1 = 0, t2 = 1. Следовательно, х 2 +




Решив теперь уравнения
х —


х —
Исходное уравнение имеет четыре корня: — 1, —

📺 Видео
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений. Часть 2. 6 класс.Скачать

Решение уравнений, 6 классСкачать

Решение уравнений. Перенос слагаемых. Часть 1. Математика 6 классСкачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Алгебра 7 Линейное уравнение с одной переменнойСкачать

Решение уравнение с переносом слагаемых из одной части в другуюСкачать

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Перенос слагаемых из одной части равенства в другую. Математика. 06.08.2021Скачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Решение уравнений. Перенос слагаемых. Часть 2. Математика 6 классСкачать

Линейное уравнение с одной переменной. 6 класс.Скачать

Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать

Линейное уравнение с одной переменнойСкачать

Решение уравнений: перенос слагаемых и раскрытие скобокСкачать

