Решение уравнений на сложение и вычитание дробей с разными знаменателями

Решение уравнений с дробями

Решение уравнений на сложение и вычитание дробей с разными знаменателями

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:6 класс, 11 урок, Сравнение, сложение и вычитание дробей с разными знаменателямиСкачать

6 класс, 11 урок, Сравнение, сложение и вычитание дробей с разными знаменателями

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать

Уравнения с дробями. Как решать уравнения с дробями в 5 классе.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:Сложение и вычитание дробей с разными знаменателями.Скачать

Сложение и вычитание дробей с разными знаменателями.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Уравнение с дробями видео урок ( Математика 5 класс )Скачать

Уравнение с дробями видео урок ( Математика 5 класс )

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Решение уравнений на сложение и вычитание дробей с разными знаменателями Решение уравнений на сложение и вычитание дробей с разными знаменателями

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Решение уравнений на сложение и вычитание дробей с разными знаменателями Решение уравнений на сложение и вычитание дробей с разными знаменателями

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:Сложение дробей и смешанных чисел. 5 класс.Скачать

Сложение дробей и смешанных чисел. 5 класс.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Решение уравнений на сложение и вычитание дробей с разными знаменателями

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Решение уравнений на сложение и вычитание дробей с разными знаменателями

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Решение уравнений на сложение и вычитание дробей с разными знаменателями

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Решение уравнений на сложение и вычитание дробей с разными знаменателями

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Решение уравнений на сложение и вычитание дробей с разными знаменателями

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Математика 6 класс. Уравнения дробей с разными знаменателями.Скачать

Математика 6 класс. Уравнения дробей с разными знаменателями.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияРешение уравнений на сложение и вычитание дробей с разными знаменателями

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решение уравнений на сложение и вычитание дробей с разными знаменателями

Переведем новый множитель в числитель..

Решение уравнений на сложение и вычитание дробей с разными знаменателями

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Решение уравнений на сложение и вычитание дробей с разными знаменателями

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Видео:дробное уравнение как решать для 6 классаСкачать

    дробное уравнение как решать для 6 класса

    Сложение и вычитание алгебраических дробей с разными знаменателями (основные правила, простейшие случаи)

    Этот видеоурок доступен по абонементу

    У вас уже есть абонемент? Войти

    Решение уравнений на сложение и вычитание дробей с разными знаменателями

    На данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с разными знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с разными знаменателями. Для этого дроби необходимо привести к общему знаменателю. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. При этом мы уже умеем приводить алгебраические дроби к общему знаменателю. Сложение и вычитание дробей с разными знаменателями – одна из наиболее важных и сложных тем в курсе 8 класса. При этом данная тема будет встречаться во многих темах курса алгебры, которые вы будете изучать в дальнейшем. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с разными знаменателями, а также разберём целый ряд типовых примеров.

    Видео:Решение уравнений с дробными числами в 6 классеСкачать

    Решение уравнений с дробными числами в 6 классе

    Сложение и вычитание алгебраических дробей: правила, примеры

    Данная статья начинает изучение действий с алгебраическими дробями: рассмотрим подробно такие действия как сложение и вычитание алгебраических дробей. Разберем схему сложения и вычитания алгебраических дробей как с одинаковыми знаменателями, так и с разными. Изучим, как сложить алгебраическую дробь с многочленом и как произвести их вычитание. На конкретных примерах поясним каждый шаг поиска решения задач.

    Видео:Сложение и вычитание обыкновенных дробей. Решение уравнений.Скачать

    Сложение и вычитание обыкновенных дробей. Решение уравнений.

    Действия сложения и вычитания при одинаковых знаменателях

    Схема сложения обыкновенных дробей применима и для алгебраических. Мы знаем, что при сложении или вычитании обыкновенных дробей с одинаковыми знаменателями необходимо сложить или вычесть их числители, а знаменатель остается исходным.

    К примеру: 3 7 + 2 7 = 3 + 2 7 = 5 7 и 5 11 — 4 11 = 5 — 4 11 = 1 11 .

    Соответственно аналогичным образом записывается правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями:

    Чтобы осуществить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, нужно соответственно сложить или вычесть числители исходных дробей, а знаменатель записать без изменений.

    Данное правило дает возможность сделать вывод, что результат сложения или вычитания алгебраических дробей — новая алгебраическая дробь (в частном случае: многочлен, одночлен или число).

    Укажем пример применения сформулированного правила.

    Заданы алгебраические дроби: x 2 + 2 · x · y — 5 x 2 · y — 2 и 3 — x · y x 2 · y — 2 . Необходимо осуществить их сложение.

    Решение

    Исходные дроби содержат одинаковые знаменатели. Согласно правилу, выполним сложение числителей заданных дробей, а знаменатель оставим неизменным.

    Сложив многочлены, являющиеся числителями исходных дробей, получим: x 2 + 2 · x · y − 5 + 3 − x · y = x 2 + ( 2 · x · y − x · y ) − 5 + 3 = x 2 + x · y − 2 .

    Тогда искомая сумма будет записана как: x 2 + x · y — 2 x 2 · y — 2 .

    В практике, как во многих случаях, решение приводится цепочкой равенств, наглядно показывающей все этапы решения:

    x 2 + 2 · x · y — 5 x 2 · y — 2 + 3 — x · y x 2 · y — 2 = x 2 + 2 · x · y — 5 + 3 — x · y x 2 · y — 2 = x 2 + x · y — 2 x 2 · y — 2

    Ответ: x 2 + 2 · x · y — 5 x 2 · y — 2 + 3 — x · y x 2 · y — 2 = x 2 + x · y — 2 x 2 · y — 2 .

    Результатом сложения или вычитания может стать сократимая дробь, в этом случае оптимально ее сократить.

    Необходимо вычесть из алгебраической дроби x x 2 — 4 · y 2 дробь 2 · y x 2 — 4 · y 2 .

    Решение

    Знаменатели исходных дробей равны. Произведем действия с числителями, а именно: вычтем из числителя первой дроби числитель второй, после чего запишем результат, оставляя знаменатель неизменным:

    x x 2 — 4 · y 2 — 2 · y x 2 — 4 · y 2 = x — 2 · y x 2 — 4 · y 2

    Мы видим, что полученная дробь – сократимая. Осуществим ее сокращение, преобразовав знаменатель при помощи формулы разности квадратов:

    x — 2 · y x 2 — 4 · y 2 = x — 2 · y ( x — 2 · y ) · ( x + 2 · y ) = 1 x + 2 · y

    Ответ: x x 2 — 4 · y 2 — 2 · y x 2 — 4 · y 2 = 1 x + 2 · y .

    По такому же принципу складываются или вычитаются три и более алгебраических дробей при одинаковых знаменателях. К примеру:

    1 x 5 + 2 · x 3 — 1 + 3 · x — x 4 x 5 + 2 · x 3 — 1 — x 2 x 5 + 2 · x 3 — 1 — 2 · x 3 x 5 + 2 · x 3 — 1 = 1 + 3 · x — x 4 — x 2 — 2 · x 3 x 5 + 2 · x 3 — 1

    Видео:Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать

    Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравнения

    Действия сложения и вычитания при разных знаменателях

    Вновь обратимся к схеме действий с обыкновенными дробями: чтобы выполнить сложение или вычитание обыкновенных дробей с разными знаменателями, необходимо привести их к общему знаменателю, а затем сложить полученные дроби с одинаковыми знаменателями.

    К примеру, 2 5 + 1 3 = 6 15 + 5 15 = 11 15 или 1 2 — 3 7 = 7 14 — 6 14 = 1 14 .

    Так же по аналогии сформулируем правило сложения и вычитания алгебраических дробей с разными знаменателями:

    Чтобы осуществить сложение или вычитание алгебраических дробей с разными знаменателями, необходимо:

    • исходные дроби привести к общему знаменателю;
    • выполнить сложение или вычитание полученных дробей с одинаковыми знаменателями.

    Очевидно, что ключевым здесь будет навык приведения алгебраических дробей к общему знаменателю. Разберем подробнее.

    Видео:Сложение и вычитание смешанных чиселСкачать

    Сложение и вычитание смешанных чисел

    Приведение алгебраических дробей к общему знаменателю

    Чтобы привести алгебраические дроби к общему знаменателю, необходимо осуществить тождественное преобразование заданных дробей, в результате которого знаменатели исходных дробей становятся одинаковыми. Здесь оптимально действовать по следующему алгоритму приведения алгебраических дробей к общему знаменателю:

    • сначала определяем общий знаменатель алгебраических дробей;
    • затем находим дополнительные множители для каждой из дробей, разделив общий знаменатель на знаменатели исходных дробей;
    • последним действием числители и знаменатели заданных алгебраических дробей умножаются на соответствующие дополнительные множители.

    Пример 3

    Заданы алгебраические дроби: a + 2 2 · a 3 — 4 · a 2 , a + 3 3 · a 2 — 6 · a и a + 1 4 · a 5 — 16 · a 3 . Необходимо привести их к общему знаменателю.

    Решение

    Действуем по указанному выше алгоритму. Определим общий знаменатель исходных дробей. С этой целью разложим знаменатели заданных дробей на множители: 2 · a 3 − 4 · a 2 = 2 · a 2 · ( a − 2 ) , 3 · a 2 − 6 · a = 3 · a · ( a − 2 ) и 4 · a 5 − 16 · a 3 = 4 · a 3 · ( a − 2 ) · ( a + 2 ) . Отсюда можем записать общий знаменатель: 12 · a 3 · ( a − 2 ) · ( a + 2 ) .

    Теперь нам предстоит найти дополнительные множители. Разделим, согласно алгоритму, найденный общий знаменатель на знаменатели исходных дробей:

    • для первой дроби: 12 · a 3 · ( a − 2 ) · ( a + 2 ) : ( 2 · a 2 · ( a − 2 ) ) = 6 · a · ( a + 2 ) ;
    • для второй дроби: 12 · a 3 · ( a − 2 ) · ( a + 2 ) : ( 3 · a · ( a − 2 ) ) = 4 · a 2 · ( a + 2 );
    • для третьей дроби: 12 · a 3 · ( a − 2 ) · ( a + 2 ) : ( 4 · a 3 · ( a − 2 ) · ( a + 2 ) ) = 3 .

    Следующий шаг — умножение числителей и знаменателей заданных дробей на найденные дополнительные множители:

    a + 2 2 · a 3 — 4 · a 2 = ( a + 2 ) · 6 · a · ( a + 2 ) ( 2 · a 3 — 4 · a 2 ) · 6 · a · ( a + 2 ) = 6 · a · ( a + 2 ) 2 12 · a 3 · ( a — 2 ) · ( a + 2 ) a + 3 3 · a 2 — 6 · a = ( a + 3 ) · 4 · a 2 · ( a + 2 ) 3 · a 2 — 6 · a · 4 · a 2 · ( a + 2 ) = 4 · a 2 · ( a + 3 ) · ( a + 2 ) 12 · a 3 · ( a — 2 ) · ( a + 2 ) a + 1 4 · a 5 — 16 · a 3 = ( a + 1 ) · 3 ( 4 · a 5 — 16 · a 3 ) · 3 = 3 · ( a + 1 ) 12 · a 3 · ( a — 2 ) · ( a + 2 )

    Ответ: a + 2 2 · a 3 — 4 · a 2 = 6 · a · ( a + 2 ) 2 12 · a 3 · ( a — 2 ) · ( a + 2 ) ; a + 3 3 · a 2 — 6 · a = 4 · a 2 · ( a + 3 ) · ( a + 2 ) 12 · a 3 · ( a — 2 ) · ( a + 2 ) ; a + 1 4 · a 5 — 16 · a 3 = 3 · ( a + 1 ) 12 · a 3 · ( a — 2 ) · ( a + 2 ) .

    Так, мы привели исходные дроби к общему знаменателю. В случае необходимости далее можно преобразовать полученный результат в вид алгебраических дробей, осуществив умножение многочленов и одночленов в числителях и знаменателях.

    Уточним также такой момент: найденный общий знаменатель оптимально оставлять в виде произведения на случай необходимости сократить конечную дробь.

    Мы рассмотрели подробно схему приведения исходных алгебраических дробей к общему знаменателю, теперь можем приступить к разбору примеров на сложение и вычитание дробей с разными знаменателями.

    Заданы алгебраические дроби: 1 — 2 · x x 2 + x и 2 · x + 5 x 2 + 3 · x + 2 . Необходимо осуществить действие их сложения.

    Решение

    Исходные дроби имеют разные знаменатели, поэтому первым действием приведем их к общему знаменателю. Раскладываем знаменатели на множители: x 2 + x = x · ( x + 1 ) , а x 2 + 3 · x + 2 = ( x + 1 ) · ( x + 2 ) , т.к. корни квадратного трехчлена x 2 + 3 · x + 2 это числа: — 1 и — 2 . Определяем общий знаменатель: x · ( x + 1 ) · ( x + 2 ) , тогда дополнительные множители будут: x + 2 и – x для первой и второй дробей соответственно.

    Таким образом: 1 — 2 · x x 2 + x = 1 — 2 · x x · ( x + 1 ) = ( 1 — 2 · x ) · ( x + 2 ) x · ( x + 1 ) · ( x + 2 ) = x + 2 — 2 · x 2 — 4 · x x · ( x + 1 ) · x + 2 = 2 — 2 · x 2 — 3 · x x · ( x + 1 ) · ( x + 2 ) и 2 · x + 5 x 2 + 3 · x + 2 = 2 · x + 5 ( x + 1 ) · ( x + 2 ) = 2 · x + 5 · x ( x + 1 ) · ( x + 2 ) · x = 2 · x 2 + 5 · x x · ( x + 1 ) · ( x + 2 )

    Теперь сложим дроби, которые мы привели к общему знаменателю:

    2 — 2 · x 2 — 3 · x x · ( x + 1 ) · ( x + 2 ) + 2 · x 2 + 5 · x x · ( x + 1 ) · ( x + 2 ) = = 2 — 2 · x 2 — 3 · x + 2 · x 2 + 5 · x x · ( x + 1 ) · ( x + 2 ) = 2 · 2 · x x · ( x + 1 ) · ( x + 2 )

    Полученную дробь возможно сократить на общий множитель x + 1 :

    2 + 2 · x x · ( x + 1 ) · ( x + 2 ) = 2 · ( x + 1 ) x · ( x + 1 ) · ( x + 2 ) = 2 x · ( x + 2 )

    И, напоследок, полученный результат запишем в виде алгебраической дроби, заменив произведение в знаменателе многочленом:

    2 x · ( x + 2 ) = 2 x 2 + 2 · x

    Запишем ход решения кратко в виде цепочки равенств:

    1 — 2 · x x 2 + x + 2 · x + 5 x 2 + 3 · x + 2 = 1 — 2 · x x · ( x + 1 ) + 2 · x + 5 ( x + 1 ) · ( x + 2 ) = = 1 — 2 · x · ( x + 2 ) x · x + 1 · x + 2 + 2 · x + 5 · x ( x + 1 ) · ( x + 2 ) · x = 2 — 2 · x 2 — 3 · x x · ( x + 1 ) · ( x + 2 ) + 2 · x 2 + 5 · x x · ( x + 1 ) · ( x + 2 ) = = 2 — 2 · x 2 — 3 · x + 2 · x 2 + 5 · x x · ( x + 1 ) · ( x + 2 ) = 2 · x + 1 x · ( x + 1 ) · ( x + 2 ) = 2 x · ( x + 2 ) = 2 x 2 + 2 · x

    Ответ: 1 — 2 · x x 2 + x + 2 · x + 5 x 2 + 3 · x + 2 = 2 x 2 + 2 · x

    Обратите внимание еще на такую деталь: перед тем, как алгебраические дроби сложить или вычесть, при наличии возможности их желательно преобразовать с целью упрощения.

    Необходимо осуществить вычитание дробей: 2 1 1 3 · x — 2 21 и 3 · x — 1 1 7 — 2 · x .

    Решение

    Преобразуем исходные алгебраические дроби для упрощения дальнейшего решения. Вынесем за скобки числовые коэффициенты переменных в знаменателе:

    2 1 1 3 · x — 2 21 = 2 4 3 · x — 2 21 = 2 4 3 · x — 1 14 и 3 · x — 1 1 7 — 2 · x = 3 · x — 1 — 2 · x — 1 14

    Данное преобразование однозначно дало нам пользу: мы явно видим наличие общего множителя.

    Избавимся вообще от числовых коэффициентов в знаменателях. Для этого используем основное свойство алгебраических дробей: числитель и знаменатель первой дроби умножим на 3 4 , а второй на — 1 2 , тогда получим:

    2 4 3 · x — 1 14 = 3 4 · 2 3 4 · 4 3 · x — 1 14 = 3 2 x — 1 14 и 3 · x — 1 — 2 · x — 1 14 = — 1 2 · 3 · x — 1 — 1 2 · — 2 · x — 1 14 = — 3 2 · x + 1 2 x — 1 14 .

    Совершим действие, которое нам позволит избавиться от дробных коэффициентов: умножим полученные дроби на 14 :

    3 2 x — 1 14 = 14 · 3 2 14 · x — 1 14 = 21 14 · x — 1 и — 3 2 · x + 1 2 x — 1 14 = 14 · — 3 2 · x + 1 2 x — 1 14 = — 21 · x + 7 14 · x — 1 .

    Наконец, выполним требуемое в условии задачи действие – вычитание:

    2 1 1 3 · x — 2 21 — 3 · x — 1 1 7 — 2 · x = 21 14 · x — 1 — — 21 · x + 7 14 · x — 1 = 21 — — 21 · x + 7 14 · x — 1 = 21 · x + 14 14 · x — 1

    Ответ: 2 1 1 3 · x — 2 21 — 3 · x — 1 1 7 — 2 · x = 21 · x + 14 14 · x — 1 .

    Видео:Уравнение. 5 класс.Скачать

    Уравнение. 5 класс.

    Сложение и вычитание алгебраической дроби и многочлена

    Данное действие сводится также к сложению или вычитанию алгебраических дробей: необходимо представить исходный многочлен как дробь со знаменателем 1 .

    Необходимо произвести сложение многочлена x 2 − 3 с алгебраической дробью 3 · x x + 2 .

    Решение

    Запишем многочлен как алгебраическую дробь со знаменателем 1 : x 2 — 3 1

    Теперь можем выполнить сложение по правилу сложения дробей с разными знаменателями:

    x 2 — 3 + 3 · x x + 2 = x 2 — 3 1 + 3 · x x + 2 = x 2 — 3 · ( x + 2 ) 1 · x + 2 + 3 · x x + 2 = = x 3 + 2 · x 2 — 3 · x — 6 x + 2 + 3 · x x + 2 = x 3 + 2 · x 2 — 3 · x — 6 + 3 · x x + 2 = = x 3 + 2 · x 2 — 6 x + 2

    Ответ: x 2 — 3 + 3 · x x + 2 = x 3 + 2 · x 2 — 6 x + 2 .

    📽️ Видео

    Сложение и вычитание дробей с разными знаменателями. Алгебра, 8 классСкачать

    Сложение и вычитание дробей с разными знаменателями. Алгебра, 8 класс

    АЛГЕБРА с НУЛЯ — Сложение и Вычитание ДробейСкачать

    АЛГЕБРА с НУЛЯ — Сложение и Вычитание Дробей

    Уравнения с дробями 5 класс (задания, примеры) - как решать?Скачать

    Уравнения с дробями 5 класс (задания, примеры) - как решать?

    Сложение и вычитание дробей с разными знаменателями. Часть 2. Примеры в несколько действий.Скачать

    Сложение и вычитание дробей с разными знаменателями. Часть 2. Примеры в несколько действий.

    Как вычитать дроби с разными знаменателями. #математика #дробиСкачать

    Как вычитать дроби с разными знаменателями.  #математика #дроби

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

    Сложение дробей и смешанных чисел. Практическая часть. 5 класс.Скачать

    Сложение дробей и смешанных чисел. Практическая часть. 5 класс.

    как решать дробиСкачать

    как решать дроби
    Поделиться или сохранить к себе: