Решение уравнений на python sympy

Библиотека Sympy: символьные вычисления в Python

Что такое SymPy ? Это библиотека символьной математики языка Python. Она является реальной альтернативой таким математическим пакетам как Mathematica или Maple и обладает очень простым и легко расширяемым кодом. SymPy написана исключительно на языке Python и не требует никаких сторонних библиотек.

Документацию и исходный код этой библиотеки можно найти на ее официальной странице.

Содержание
  1. Первые шаги с SymPy
  2. Используем SymPy как обычный калькулятор
  3. Символы
  4. Алгебраические преобразования
  5. Раскрытие скобок
  6. Упрощение выражений
  7. Вычисления
  8. Вычисления пределов
  9. Дифференцирование
  10. Разложение в ряд
  11. Интегрирование
  12. Решение уравнений
  13. Системы линейных уравнений
  14. Факторизация
  15. Булевы уравнения
  16. Линейная алгебра
  17. Матрицы
  18. Дифференциальные уравнения
  19. Бесплатные кодинг марафоны с ревью кода
  20. Математическая библиотека Python SymPy
  21. Установка SymPy
  22. Символьные вычисления в SymPy
  23. Числа
  24. Класс Float
  25. Класс Integer
  26. Символы
  27. Подстановка параметров
  28. Функция simplify()
  29. Функция evalf()
  30. Функция lambdify()
  31. Логические выражения
  32. Запросы
  33. Символьное решение линейных дифференциальных уравнений и систем методом преобразований Лапласа c применением SymPy
  34. История об авторстве преобразований Лапласа
  35. Функции прямого и обратного преобразования Лапласа
  36. Преобразование Лапласа от производных высших порядков для решения задачи Коши
  37. Метод решения линейных дифференциальных уравнений и систем уравнений, основанный на преобразованиях Лапласа, с использованием библиотеки SymPy
  38. Функции для решения ОДУ
  39. Вывод:
  40. 💡 Видео

Видео:Использование библиотеки SymPy для работы с системами уравнений в PythonСкачать

Использование библиотеки SymPy для работы с системами уравнений в Python

Первые шаги с SymPy

Используем SymPy как обычный калькулятор

В библиотеке SymPy есть три встроенных численных типа данных: Real , Rational и Integer . С Real и Integer все понятно, а класс Rational представляет рациональное число как пару чисел: числитель и знаменатель рациональной дроби. Таким образом, Rational(1, 2) представляет собой 1/2 , а, например, Rational(5, 2) — соответственно 5/2 .

Библиотека SymPy использует библиотеку mpmath , что позволяет производить вычисления с произвольной точностью. Таким образом, ряд констант (например, пи, e), которые в данной библиотеке рассматриваются как символы, могут быть вычислены с любой точностью.

Как можно заметить, функция evalf() дает на выходе число с плавающей точкой.

В SymPy есть также класс, представляющий такое понятие в математике, как бесконечность. Он обозначается следующим образом: oo .

Символы

В отличие от ряда других систем компьютерной алгебры, в SymPy можно в явном виде задавать символьные переменные. Это происходит следующим образом:

После их задания, с ними можно производить различные манипуляции.

С символами можно производить преобразования с использованием некоторых операторов языка Python. А именно, арифметических ( + , -` , «* , ** ) и логических ( & , | ,

Библиотека SymPy позволяет задавать форму вывода результатов на экран. Обычно мы используем формат такого вида:

Видео:Решения системы линейных уравнений на Python (Sympy).Скачать

Решения системы линейных уравнений на Python (Sympy).

Алгебраические преобразования

SymPy способна на сложные алгебраические преобразования. Здесь мы рассмотрим наиболее востребованные из них, а именно раскрытие скобок и упрощение выражений.

Раскрытие скобок

Чтобы раскрыть скобки в алгебраических выражениях, используйте следующий синтаксис:

При помощи ключевого слова можно добавить поддержку работы с комплексными переменными, а также раскрытие скобок в тригонометрических функциях.

Упрощение выражений

Если вы хотите привести выражение к более простому виду (возможно, сократить какие-то члены), то используйте функцию simplify .

Также надо сказать, что для определенных видов математических функций существуют альтернативные, более конкретные функции для упрощения выражений. Так, для упрощения степенных функций есть функция powsimp , для тригонометрических — trigsimp , а для логарифмических — logcombine , radsimp .

Видео:FreeDy010 Решение Системы нелинейных уравнений scipy sympyСкачать

FreeDy010 Решение Системы нелинейных уравнений scipy sympy

Вычисления

Вычисления пределов

Для вычисления пределов в SymPy предусмотрен очень простой синтаксис, а именно limit(function, variable, point) . Например, если вы хотите вычислить предел функции f(x) , где x -> 0 , то надо написать limit(f(x), x, 0) .

Также можно вычислять пределы, которые стремятся к бесконечности.

Дифференцирование

Для дифференцирования выражений в SymPy есть функция diff(func, var) . Ниже даны примеры ее работы.

Проверим результат последней функции при помощи определения производной через предел.

tan 2 (𝑥)+1 Результат тот же.

Также при помощи этой же функции могут быть вычислены производные более высоких порядков. Синтаксис функции будет следующим: diff(func, var, n) . Ниже приведено несколько примеров.

Разложение в ряд

Для разложения выражения в ряд Тейлора используется следующий синтаксис: series(expr, var) .

Интегрирование

В SymPy реализована поддержка определенных и неопределенных интегралов при помощи функции integrate() . Интегрировать можно элементарные, трансцендентные и специальные функции. Интегрирование осуществляется с помощью расширенного алгоритма Риша-Нормана. Также используются различные эвристики и шаблоны. Вот примеры интегрирования элементарных функций:

Также несложно посчитать интеграл и от специальных функций. Возьмем, например, функцию Гаусса:

Результат вычисления можете посмотреть сами. Вот примеры вычисления определенных интегралов.

Также можно вычислять определенные интегралы с бесконечными пределами интегрирования (несобственные интегралы).

Решение уравнений

При помощи SymPy можно решать алгебраические уравнения с одной или несколькими переменными. Для этого используется функция solveset() .

Как можно заметить, первое выражение функции solveset() приравнивается к 0 и решается относительно х . Также возможно решать некоторые уравнения с трансцендентными функциями.

Системы линейных уравнений

SymPy способна решать широкий класс полиномиальных уравнений. Также при помощи данной библиотеки можно решать и системы уравнений. При этом переменные, относительно которых должна быть разрешена система, передаются в виде кортежа во втором аргументе функции solve() , которая используется для таких задач.

Факторизация

Другим мощным методом исследования полиномиальных уравнений является факторизация многочленов (то есть представление многочлена в виде произведения многочленов меньших степеней). Для этого в SymPy предусмотрена функция factor() , которая способна производить факторизацию очень широкого класса полиномов.

Булевы уравнения

Также в SymPy реализована возможность решения булевых уравнений, что по сути означает проверку булевого выражения на истинность. Для этого используется функция satisfiable() .

Данный результат говорит нам о том, что выражение (x & y) будет истинным тогда и только тогда, когда x и y истинны. Если выражение не может быть истинным ни при каких значениях переменных, то функция вернет результат False .

Видео:Использование библиотеки SymPy для работы с символами и выражениями в PythonСкачать

Использование библиотеки SymPy для работы с символами и выражениями в Python

Линейная алгебра

Матрицы

Матрицы в SymPy создаются как экземпляры класса Matrix :

В отличие от NumPy , мы можем использовать в матрицах символьные переменные:

И производить с ними разные манипуляции:

Дифференциальные уравнения

При помощи библиотеки SymPy можно решать некоторые обыкновенные дифференциальные уравнения. Для этого используется функция dsolve() . Для начала нам надо задать неопределенную функцию. Это можно сделать, передав параметр cls=Function в функцию symbols() .

Теперь f и g заданы как неопределенные функции. мы можем в этом убедиться, просто вызвав f(x) .

Теперь решим следующее дифференциальное уравнение:

Чтобы улучшить решаемость и помочь этой функции в поиске решения, можно передавать в нее определенные ключевые аргументы. Например, если мы видим, что это уравнение с разделяемыми переменными, то мы можем передать в функцию аргумент hint=’separable’ .

Бесплатные кодинг марафоны с ревью кода

Наш телеграм канал проводит бесплатные марафоны по написанию кода на Python с ревью кода от преподавателя

Видео:Решение системы уравнений 5 вариантов Python, SymPy, linsolve() #shorts, #pythonshorts, #codeshortsСкачать

Решение системы уравнений  5 вариантов Python, SymPy, linsolve() #shorts, #pythonshorts, #codeshorts

Математическая библиотека Python SymPy

SymPy — это библиотека Python для выполнения символьных вычислений. Это система компьютерной алгебры, которая может выступать как отдельное приложение, так и в качестве библиотеки для других приложений. Поработать с ней онлайн можно на https://live.sympy.org/. Поскольку это чистая библиотека Python, ее можно использовать даже в интерактивном режиме.

В SymPy есть разные функции, которые применяются в сфере символьных вычислений, математического анализа, алгебры, дискретной математики, квантовой физики и так далее. SymPy может представлять результат в разных форматах: LaTeX, MathML и так далее. Распространяется библиотека по лицензии New BSD. Первыми эту библиотеку выпустили разработчики Ondřej Čertík и Aaron Meurer в 2007 году. Текущая актуальная версия библиотеки — 1.6.2.

Вот где применяется SymPy:

  • Многочлены
  • Математический анализ
  • Дискретная математика
  • Матрицы
  • Геометрия
  • Построение графиков
  • Физика
  • Статистика
  • Комбинаторика

Видео:the solve() Function in SymPy: Solving Equations with PythonСкачать

the solve() Function in SymPy: Solving Equations with Python

Установка SymPy

Для работы SymPy требуется одна важная библиотека под названием mpmath . Она используется для вещественной и комплексной арифметики с числами с плавающей точкой произвольной точности. Однако pip установит ее автоматически при загрузке самой SymPy:

Такие дистрибутивы, как Anaconda, Enthough, Canopy и другие, заранее включают SymPy. Чтобы убедиться в этом, достаточно ввести в интерактивном режиме команду:

Исходный код можно найти на GitHub.

Видео:Дифференциальные уравнения в SymPyСкачать

Дифференциальные уравнения в SymPy

Символьные вычисления в SymPy

Символьные вычисления — это разработка алгоритмов для управления математическими выражениями и другими объектами. Такие вычисления объединяют математику и компьютерные науки для решения математических выражений с помощью математических символов.

Система компьютерной алгебры же, такая как SymPy, оценивает алгебраические выражения с помощью тех же символов, которые используются в традиционных ручных методах. Например, квадратный корень числа с помощью модуля math в Python вычисляется вот так:

Как можно увидеть, квадратный корень числа 7 вычисляется приблизительно. Но в SymPy квадратные корни чисел, которые не являются идеальными квадратами, просто не вычисляются:

Вот каким будет вывод этого кода: sqrt(7) .

Это можно упростить и показать результат выражения символически таким вот образом:

В случае с модулем math вернется число, а вот в SymPy — формула.

Для рендеринга математических символов в формате LaTeX код SymPy, используйте Jupyter notebook:

Если выполнить эту команду в IDLE, то получится следующий результат:

Решение уравнений на python sympy

Квадратный корень неидеального корня также может быть представлен в формате LaTeX с помощью привычных символов:

Решение уравнений на python sympy

Символьные вычисления с помощью таких систем, как SymPy, помогают выполнять вычисления самого разного рода (производные, интегралы, пределы, решение уравнений, работа с матрицами) в символьном виде.

В пакете SymPy есть разные модули, которые помогают строить графики, выводить результат (LaTeX), заниматься физикой, статистикой, комбинаторикой, числовой теорией, геометрией, логикой и так далее.

Видео:Библиотека SymPy для алгебраических операций в PythonСкачать

Библиотека SymPy для алгебраических операций в Python

Числа

Основной модуль в SymPy включает класс Number , представляющий атомарные числа. У него есть пара подклассов: Float и Rational . В Rational также входит Integer .

Класс Float

Float представляет числа с плавающей точкой произвольной точности:

SymPy может конвертировать целое число или строку в число с плавающей точкой:

При конвертации к числу с плавающей точкой, также можно указать количество цифр для точности:

Представить число дробью можно с помощью объекта класса Rational , где знаменатель — не 0:

Решение уравнений на python sympy

Если число с плавающей точкой передать в конструктор Rational() , то он вернет дробь:

Решение уравнений на python sympy

Для упрощения можно указать ограничение знаменателя:

Выведется дробь 1/5 вместо 3602879701896397/18014398509481984.

Если же в конструктор передать строку, то вернется рациональное число произвольной точности:

Решение уравнений на python sympy

Также рациональное число можно получить, если в качестве аргументов передать два числа. Числитель и знаменатель доступны в виде свойств:

Класс Integer

Класс Integer в SymPy представляет целое число любого размера. Конструктор принимает рациональные и числа с плавающей точкой. В результате он откидывает дробную часть:

Также есть класс RealNumber , который является алиасом для Float . В SymPy есть классы-одиночки Zero и One , доступные через S.Zero и S.One соответственно.

Другие числовые объекты-одиночки — Half , NaN , Infinity и ImaginaryUnit .

Бесконечность представлена в виде объекта-символа oo или как S.Infinity :

Решение уравнений на python sympy

ImaginaryUnit можно импортировать как символ I , а получить к нему доступ — через S.ImaginaryUnit .

Решение уравнений на python sympy

Видео:Будет день и будет код. SymPy откройся, SymPy отдайся! Первое видео по библиотеке SymPy PythonСкачать

Будет день и будет код. SymPy откройся, SymPy отдайся! Первое видео по библиотеке SymPy Python

Символы

Symbol — самый важный класс в библиотеке SymPy. Как уже упоминалось ранее, символьные вычисления выполняются с помощью символов. И переменные SymPy являются объектами класса Symbol .

Аргумент функции Symbol() — это строка, содержащая символ, который можно присвоить переменной.

Код выше является эквивалентом этого выражения:

Решение уравнений на python sympy

Символ может включать больше одной буквы:

Также в SymPy есть функция Symbols() , с помощью которой можно определить несколько символов за раз. Строка содержит названия переменных, разделенные запятыми или пробелами.

В модуле abc можно найти элементы латинского и греческого алфавитов в виде символов. Таким образом вместо создания экземпляра Symbol можно использовать метод:

Однако C, O, S, I, N, E и Q являются заранее определенными символами. Также символы с более чем одной буквы не определены в abc. Для них нужно использовать объект Symbol . Модуль abs определяет специальные имена, которые могут обнаружить определения в пространстве имен SymPy по умолчанию. сlash1 содержит однобуквенные символы, а clash2 — целые слова.

Индексированные символы (последовательность слов с цифрами) можно определить с помощью синтаксиса, напоминающего функцию range() . Диапазоны обозначаются двоеточием. Тип диапазона определяется символом справа от двоеточия. Если это цифра, то все смежные цифры слева воспринимаются как неотрицательное начальное значение.

Смежные цифры справа берутся на 1 больше конечного значения.

Видео:Решение 1 го нелинейного алгебраического уравнения в PythonСкачать

Решение 1 го нелинейного алгебраического уравнения в Python

Подстановка параметров

Одна из базовых операций в математических выражениях — подстановка. Функция subs() заменяет все случаи первого параметра на второй.

Этот код даст вывод, эквивалентный такому выражению.

Решение уравнений на python sympy

А кодом expr.subs(x,a) мы получим туже формулу, но с a вместо x .

Эта функция полезна, когда требуется вычислить определенное выражение. Например, нужно посчитать значения выражения, заменив a на 5 :

Решение уравнений на python sympy

Также функция используется для замены подвыражения другим подвыражением. В следующем примере b заменяется на a+b .

Это дает такой вывод:

Решение уравнений на python sympy

Видео:34 Задача: Найти корни квадратного уравнения при помощи PythonСкачать

34 Задача: Найти корни квадратного уравнения при помощи Python

Функция simplify()

Функция simplify() используется для преобразования любого произвольного выражения, чтобы его можно было использовать как выражение SymPy. Обычные объекты Python, такие как целые числа, конвертируются в SymPy.Integer и так далее. Строки также конвертируются в выражения SymPy:

Любой объект Python можно конвертировать в объект SymPy. Однако учитывая то, что при преобразовании используется функция eval() , не стоит использовать некорректные выражения, иначе возникнет ошибка SimplifyError .

Функция simplify() принимает следующий аргумент: strict=False . Если установить True , то преобразованы будут только те типы, для которых определено явное преобразование. В противном случае также возникнет ошибка SimplifyError . Если же поставить False , то арифметические выражения и операторы будут конвертированы в их эквиваленты SumPy без вычисления выражения.

Решение уравнений на python sympy

Видео:Библиотека SymPy для Python (видео 2) #sympy #python #integer #rational #pi #E #exp #logСкачать

Библиотека SymPy для Python  (видео 2) #sympy #python #integer #rational #pi #E #exp #log

Функция evalf()

Функция вычисляет данное числовое выражение с точностью до 100 цифр после плавающей точки. Она также принимает параметр subs , как объект словаря с числовыми значениями для символов. Например такое выражение:

Даст такой результат: ?? 2

Вычислим выражение с помощью evalf() и заменим r на 5:

По умолчанию точность после плавающей точки — 15, но это значение можно перезаписать до 100. Следующее выражение вычисляет, используя вплоть до 20 цифр точности:

Видео:Решение n го нелинейных алгебраических уравнений в PythonСкачать

Решение n го нелинейных алгебраических  уравнений в Python

Функция lambdify()

Функция lambdify() переводит выражения SymPy в функции Python. Если выражение, которое нужно вычислить, затрагивает диапазон значений, то функция evalf() становится неэффективной. Функция lambdify действует как лямбда-функция с тем исключением, что она конвертирует SymPy в имена данной числовой библиотеки, обычно NumPy. По умолчанию же она реализована на основе стандартной библиотеки math.

У выражения может быть больше одной переменной. В таком случае первым аргументом функции является список переменных, а после него — само выражение:

Но чтобы использовать numpy в качестве основной библиотеки, ее нужно передать в качестве аргумента функции lambdify() .

В этой функции использовались два массива numpy: a и b . В случае с ними выполнение гораздо быстрее:

Видео:СКМ-2021-05-25 SymPy Символьные вычисленияСкачать

СКМ-2021-05-25 SymPy Символьные вычисления

Логические выражения

Булевы функции расположены в модуле sympy.basic.booleanarg . Их можно создать и с помощью стандартных операторов Python: & (And), | (Or),

(Not), а также >> и . Булевы выражения наследуются от класса Basic .

BooleanTrue.
Эта функция является эквивалентом True из Python. Она возвращает объект-одиночку, доступ к которому можно получить и с помощью S.true .

BooleanFalse.
А эта функция является эквивалентом False . Ее можно достать с помощью S.False .

And.
Функция логического AND оценивает два аргумента и возвращает False , если хотя бы один из них является False . Эта функция заменяет оператор & .

Or.
Оценивает два выражения и возвращает True , если хотя бы одно из них является True . Это же поведение можно получить с помощью оператора | .

Not.
Результат этой функции — отрицание булево аргумента. True, если аргумент является False , и False в противном случае. В Python за это отвечает оператор

Xor.
Логический XOR (исключающий OR) возвращает True, если нечетное количество аргументов равняется True , а остальные — False . False же вернется в том случае, если четное количество аргументов True , а остальные — False . То же поведение работает в случае оператора ^ .

В предыдущем примере один(нечетное число) аргумент является True , поэтому Xor вернет True . Если же количество истинных аргументов будет четным, результатом будет False , как показано дальше.

Nand.
Выполняет логическую операцию NAND. Оценивает аргументы и возвращает True , если хотя бы один из них равен False , и False — если они истинные.

Nor.
Выполняет логическую операцию NOR. Оценивает аргументы и возвращает False , если один из них True , или же True , если все — False .

Хотя SymPy и предлагает операторы ^ для Xor ,

для Not , | для Or и & для And ради удобства, в Python они используются в качестве побитовых. Поэтому если операнды будут целыми числами, результаты будут отличаться.

Equivalent.
Эта функция возвращает отношение эквивалентности. Equivalent(A, B) будет равно True тогда и только тогда, когда A и B оба будут True или False . Функция вернет True , если все аргументы являются логически эквивалентными. В противном случае — False .

Видео:Будет день и будет код! SymPy откройся! Видео 3. #Python, #SymPy, #Eq ,#exp, #solveset, #linsolveСкачать

Будет день и будет код! SymPy откройся! Видео 3.  #Python, #SymPy, #Eq ,#exp, #solveset, #linsolve

Запросы

Модуль assumptions в SymPy включает инструменты для получения информации о выражениях. Для этого используется функция ask() .

Следующие свойства предоставляют полезную информацию о выражении:

algebraic(x)
Чтобы быть алгебраическим, число должно быть корнем ненулевого полиномиального уравнения с рациональными коэффициентами. √2, потому что √2 — это решение x2 − 2 = 0. Следовательно, это выражения является алгебраическим.

complex(x)
Предикат комплексного числа. Является истиной тогда и только тогда, когда x принадлежит множеству комплексных чисел.

composite(x)
Предикат составного числа, возвращаемый ask(Q.composite(x)) является истиной тогда и только тогда, когда x — это положительное число, имеющее как минимум один положительный делитель, кроме 1 и самого числа.

even, odd
ask() возвращает True , если x находится в множестве четных и нечетных чисел соответственно.

imaginary
Свойство представляет предикат мнимого числа. Является истиной, если x можно записать как действительное число, умноженное на мнимую единицу.

integer
Это свойство, возвращаемое Q.integer(x) , будет истинным только в том случае, если x принадлежит множеству четных чисел.

rational, irrational
Q.irrational(x) истинно тогда и только тогда, когда x — это любое реальное число, которое нельзя представить как отношение целых чисел. Например, pi — это иррациональное число.

positive, negative
Предикаты для проверки того, является ли число положительным или отрицательным.

zero, nonzero
Предикат для проверки того, является ли число нулем или нет.

Видео:Алгебра на Питоне - SymPyСкачать

Алгебра на Питоне - SymPy

Символьное решение линейных дифференциальных уравнений и систем методом преобразований Лапласа c применением SymPy

Решение уравнений на python sympy

Реализация алгоритмов на языке Python с использованием символьных вычислений очень удобна при решении задач математического моделирования объектов, заданных дифференциальными уравнениями. Для решения таких уравнений широко используются преобразования Лапласа, которые, говоря упрощенно, позволяют свести задачу к решению простейших алгебраических уравнений.

В данной публикации предлагаю рассмотреть функции прямого и обратного преобразования Лапласа из библиотеки SymPy, которые позволяют использовать метод Лапласа для решения дифференциальных уравнений и систем средствами Python.

Сам метод Лапласа и его преимущества при решении линейных дифференциальных уравнений и систем широко освещены в литературе, например в популярном издании [1]. В книге метод Лапласа приведен для реализации в лицензионных программных пакетах Mathematica, Maple и MATLAB (что подразумевает приобретение учебным заведением этого ПО) на выбранных автором отдельных примерах.

Попробуем сегодня рассмотреть не отдельный пример решения учебной задачи средствами Python, а общий метод решения линейных дифференциальных уравнений и систем с использованием функций прямого и обратного преобразования Лапласа. При этом сохраним обучающий момент: левая часть линейного дифференциального уравнения с условиями Коши будет формироваться самим студентом, а рутинная часть задачи, состоящая в прямом преобразовании Лапласа правой части уравнения, будет выполняться при помощи функции laplace_transform().

История об авторстве преобразований Лапласа

Преобразования Лапласа (изображения по Лапласу) имеют интересную историю. Впервые интеграл в определении преобразования Лапласа появился в одной из работ Л. Эйлера. Однако в математике общепринято называть методику или теорему именем того математика, который открыл ее после Эйлера. В противном случае существовало бы несколько сотен различных теорем Эйлера.

В данном случае следующим после Эйлера был французский математик Пьер Симон де Лаплас (Pierre Simon de Laplace (1749-1827)). Именно он использовал такие интегралы в своей работе по теории вероятностей. Самим Лапласом не применялись так называемые «операционные методы» для нахождения решений дифференциальных уравнений, основанные на преобразованиях Лапласа (изображениях по Лапласу). Эти методы в действительности были обнаружены и популяризировались инженерами-практиками, особенно английским инженером-электриком Оливером Хевисайдом (1850-1925). Задолго до того, как была строго доказана справедливость этих методов, операционное исчисление успешно и широко применялось, хотя его законность ставилось в значительной мере под сомнение даже в начале XX столетия, и по этой теме велись весьма ожесточенные дебаты.

Функции прямого и обратного преобразования Лапласа

Решение уравнений на python sympy

Эта функция возвращает (F, a, cond), где F(s) есть преобразование Лапласа функции f(t), a Текст программы

Время на обратное визуальное преобразование Лапласа: 2.68 s

Решение уравнений на python sympy

Обратное преобразование Лапласа часто используется при синтезе САУ, где Python может заменить дорогостоящих программных “монстров” типа MathCAD, поэтому приведенное использование обратного преобразования имеет практическое значение.

Преобразование Лапласа от производных высших порядков для решения задачи Коши

Решение уравнений на python sympy

Если a и b — константы, то

Решение уравнений на python sympy

для всех s, таких, что существуют оба преобразования Лапласа (изображения по Лапласу) функций f(t) и q(t).

Проверим линейность прямого и обратного преобразований Лапласа с помощью ранее рассмотренных функций laplace_transform() и inverse_laplace_transform(). Для этого в качестве примера примем f(t)=sin(3t), q(t)=cos(7t), a=5, b=7 и используем следующую программу.

(7*s**3 + 15*s**2 + 63*s + 735)/((s**2 + 9)*(s**2 + 49))
(7*s**3 + 15*s**2 + 63*s + 735)/((s**2 + 9)*(s**2 + 49))
True
5*sin(3*t) + 7*cos(7*t)
5*sin(3*t) + 7*cos(7*t)

Приведенный код также демонстрирует однозначность обратного преобразования Лапласа.

Если предположить, что Решение уравнений на python sympyудовлетворяет условиям первой теоремы, то из этой теоремы будет следовать, что:

Решение уравнений на python sympy

Решение уравнений на python sympy

Повторение этого вычисления дает

Решение уравнений на python sympy

После конечного числа таких шагов мы получаем следующее обобщение первой теоремы:

Решение уравнений на python sympy

Решение уравнений на python sympy

Применяя соотношение (3), содержащее преобразованные по Лапласу производные искомой функции с начальными условиями, к уравнению (1), можно получить его решение по методу, специально разработанному на нашей кафедре при активной поддержке Scorobey для библиотеки SymPy.

Метод решения линейных дифференциальных уравнений и систем уравнений, основанный на преобразованиях Лапласа, с использованием библиотеки SymPy

Решение уравнений на python sympy

где Решение уравнений на python sympy— приведенное начальное положение массы, Решение уравнений на python sympy— приведенная начальная скорость массы.

Упрощённая физическая модель, заданная уравнением (4) при ненулевых начальных условиях [1]:

Решение уравнений на python sympy

Система, состоящая из материальной точки заданной массы, закрепленной на пружине, удовлетворяет задаче Коши (задаче с начальными условиями). Материальная точка заданной массы первоначально находится в покое в положении ее равновесия.

Для решения этого и других линейных дифференциальных уравнений методом преобразований Лапласа удобно пользоваться следующей системой, полученной из соотношений (3):
Решение уравнений на python sympy
Решение уравнений на python sympy
Решение уравнений на python sympy
Решение уравнений на python sympy
Решение уравнений на python sympy

Последовательность решения средствами SymPy следующая:

    загружаем необходимые модули и явно определяем символьные переменные:

указываем версию библиотеки sympy, чтобы учесть ее особенности. Для этого нужно ввести такие строки:

по физическому смыслу задачи переменная времени определяется для области, включающей ноль и положительные числа. Задаём начальные условия и функцию в правой части уравнения (4) с её последующим преобразование по Лапласу. Для начальных условий необходимо использовать функцию Rational, поскольку использование десятичного округления приводит к ошибке.

пользуясь (5), переписываем преобразованные по Лапласу производные, входящие в левую часть уравнения (4), формируя из них левую часть этого уравнения, и сравниваем результат с правой его частью:

решаем полученное алгебраическое уравнение относительно преобразования X(s) и выполняем обратное преобразование Лапласа:

осуществляем переход из работы в библиотеке SymPyв библиотеку NumPy:

строим график обычным для Python методом:

Получаем:
Версия библиотеки sympy – 1.3

Решение уравнений на python sympy

Получен график периодической функции, дающей положение материальной точки заданной массы. Метод преобразования Лапласа с использованием библиотеки SymPy дает решение не только без потребности сначала найти общее решение однородного уравнения и частное решение первоначального неоднородного дифференциального уравнения, но и без потребности использования метода элементарных дробей и таблиц Лапласа.

При этом учебное значение метода решения сохраняется за счёт необходимости использования системы (5) и перехода в NumPy для исследования решения более производительными методами.

Для дальнейшей демонстрации метода решим систему дифференциальных уравнений:
Решение уравнений на python sympy
с начальными условиями Решение уравнений на python sympy

Упрощённая физическая модель, заданная системой уравнений (6) при нулевых начальных условиях:

Решение уравнений на python sympy

Таким образом, сила f(t) внезапно прилагается ко второй материальной точке заданной массы в момент времени t = 0, когда система находится в покое в ее положении равновесия.

Решение системы уравнений идентично ранее рассмотренному решению дифференциального уравнения (4), поэтому привожу текст программы без пояснений.

Решение уравнений на python sympy

Для ненулевых начальных условий текст программы и график функций примет вид:

Решение уравнений на python sympy

Рассмотрим решение линейного дифференциального уравнения четвёртого порядка с нулевыми начальными условиями:
Решение уравнений на python sympy
Решение уравнений на python sympy

Решение уравнений на python sympy

Решим линейное дифференциальное уравнение четвёртого порядка:
Решение уравнений на python sympy
с начальными условиями Решение уравнений на python sympy, Решение уравнений на python sympy, Решение уравнений на python sympy.

Решение уравнений на python sympy

Функции для решения ОДУ

Для имеющих аналитическое решение ОДУ и систем ОДУ применяется функция dsolve():
sympy.solvers.ode.dsolve(eq, func=None, hint=’default’, simplify=True, ics=None, xi=None, eta=None, x0=0, n=6, **kwargs)

Давайте сравним производительность функции dsolve() с методом Лапласа. Для примера возьмём следующее дифференциальное уравнение четвёртой степени с нулевыми начальными условиями:
Решение уравнений на python sympy
Решение уравнений на python sympy

Время решения уравнения с использованием функции dsolve(): 1.437 s

Решение уравнений на python sympy

Время решения уравнения с использованием преобразования Лапласа: 3.274 s

Решение уравнений на python sympy

Итак, функция dsolve() (1.437 s) решает уравнение четвёртого порядка быстрее, чем выполняется решение по методу преобразований Лапласа (3.274 s) более чем в два раза. Однако при этом следует отметить, что функция dsolve() не решает системы дифференциальных уравнений второго порядка, например, при решении системы (6) с использованием функция dsolve() возникает ошибка:

Данная ошибка означает, что решение системы дифференциальных уравнений с помощью функции dsolve() не может быть представлено символьно. Тогда как при помощи преобразований Лапласа мы получили символьное представление решения, и это доказывает эффективность предложенного метода.

Для того чтобы найти необходимый метод решения дифференциальных уравнений с помощью функции dsolve(), нужно использовать classify_ode(eq, f(x)), например:

Eq(f(x), C1*sin(x) + C2*cos(x))
(‘nth_linear_constant_coeff_homogeneous’, ‘2nd_power_series_ordinary’)
(‘separable’, ‘1st_exact’, ‘almost_linear’, ‘1st_power_series’, ‘lie_group’, ‘separable_Integral’, ‘1st_exact_Integral’, ‘almost_linear_Integral’)
[Eq(f(x), -acos((C1 + Integral(0, x))*exp(-Integral(-tan(x), x))) + 2*pi), Eq(f(x), acos((C1 + Integral(0,x))*exp(-Integral(-tan(x), x))))]

Таким образом, для уравнения eq=Eq(f(x).diff(x,x)+f(x),0) работает любой метод из первого списка:

Для уравнения eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x) работает любой метод из второго списка:

separable, 1st_exact, almost_linear,
1st_power_series, lie_group, separable_Integral,
1st_exact_Integral, almost_linear_Integral

Чтобы использовать выбранный метод, запись функции dsolve() примет вид, к примеру:

Вывод:

Данная статья ставила своей целью показать, как использовать средства библиотек SciPy и NumPy на примере решения систем линейных ОДУ операторным методом. Таким образом, были рассмотрены методы символьного решения линейных дифференциальных уравнений и систем уравнений методом Лапласа. Проведен анализ производительности этого метода и методов, реализованных в функции dsolve().

  1. Дифференциальные уравнения и краевые задачи: моделирование и вычисление с помощью Mathematica, Maple и MATLAB. 3-е издание.: Пер. с англ. — М.: ООО «И.Д. Вильяме», 2008. — 1104 с.: ил. — Парал. тит. англ.
  2. Использование обратного преобразования Лапласа для анализа динамических звеньев систем управления

💡 Видео

Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать

Python - численное решение дифференциального уравнения 1го порядка и вывод графика
Поделиться или сохранить к себе: