Содержание:
- Уравнения
- Уравнения-следствия и равносильные преобразования уравнений
- Понятие уравнения и его корней
- Область допустимых значений (ОДЗ) уравнения
- Методы решения уравнений
- Уравнения-следствия
- Равносильные уравнения
- Причины появления посторонних корней и потери корней при решении уравнений
- Применение свойств функций к решению уравнений
- Конечная ОДЗ
- Оценка левой и правой частей уравнения
- Использование возрастания и убывания функций к решению уравнений
- Лекция 26. Уравнения с одной переменной
- Учебное пособие: Комплексные числа
- § 1. Комплексные числа: определения, геометрическая интерпретация, действия в алгебраической, тригонометрической и показательной формах
- Определение комплексного числа (Сформулируйте определение комплексного числа )
- Комплексные равенства (Сформулируйте смысл комплексного равенства )
- Геометрическое изображение комплексных чисел (В чём состоит геометрическое изображение комплексных чисел? )
- Модуль и аргумент комплексного числа (Что такое модуль и аргумент комплексного числа? )
- Алгебраическая и тригонометрическая формы комплексного числа (Что такое алгебраическая и тригонометрическая формы комплексного числа? )
- Арифметические действия над комплексными числами (Дайте определения и перечислите основные свойства арифметических действий над комплексными числами. )
- Показательная форма комплексного числа
- § 2. Целые функции (многочлены) и их основные свойства. Решение алгебраических уравнений на множестве комплексных чисел
- Примеры решения алгебраических уравнений на множестве комплексных чисел (Приведите примеры решения алгебраических уравнений на множестве комплексных чисел )
- 💥 Видео
Видео:Решите уравнение ➜ x^(2x)=1 ➜ a) на множестве действительных чисел ➜ б) на множестве целых чиселСкачать

Уравнения
Уравнения-следствия и равносильные преобразования уравнений
1. Понятие уравнения и его корней
Определение:
Равенство с переменной называется уравнением. В общем виде уравнение с одной переменной
Под этой краткой записью понимают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны
Пример:



Корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство.
Решить уравнение — значит найти все его корни или доказать, что их нет




2. Область допустимых значений (ОДЗ)
Областью допустимых значений (или областью определения) уравнения называется общая область определения для функций 

Для уравнения 





3. Уравнения-следствия
Если каждый корень первого уравнения является корнем второго, то второе уравнение называется следствием первого уравнения.
Если из правильности первого равенства следует правильность каждого последующего, то получаем уравнения-следствия.
При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому при использовании уравнений-следствий проверка полученных корней подстановкой их в исходное уравнение является составной частью решения.
Пример:
Решение:
► Возведем обе части уравнения в квадрат:
Проверка, 



4. Равносильные уравнения
Определение:
Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни.
То есть каждый корень первого уравнения является корнем второго уравнения и, наоборот, каждый корень второго уравнения является корнем первого. (Схема решения уравнений с помощью равносильных преобразований приведена в пункте 5 этой таблицы)
Простейшие теоремы
- Если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве)
- Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получим уравнение, равносильное заданному (на ОДЗ заданного уравнения)
5. Схема поиска плана решения уравнений




Объяснение и обоснование:
Понятие уравнения и его корней
Уравнение в математике чаще всего понимают как аналитическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны. Поэтому в общем виде уравнения с одной переменной 
Часто уравнения определяют короче — как равенство с переменной.
Напомним, что корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни или доказать, что их нет.
Например, уравнение 

а уравнение 

Область допустимых значений (ОДЗ) уравнения
Если задано уравнение 







Понятно, что каждый корень данного уравнения принадлежит как области определения функции 

Например, в уравнении 





Заметим, что нахождение ОДЗ данного уравнения может быть полезным для его решения, но не всегда является обязательным элементом решения уравнения.
Методы решения уравнений
Для решения уравнений используют методы точного и приближенного решений. А именно, для точного решения уравнений в курсе математики 5-6 классов использовались зависимости между компонентами и результатами действий и свойства числовых равенств; в курсе алгебры 7-9 классов — равносильные преобразования уравнений, а для приближенного решения уравнений — графический метод.
Графический метод решения уравнений не дает высокой точности нахождения корней уравнения, и с его помощью чаще всего можно получить только грубые приближения корней. Иногда удобно графически определить количество корней уравнения или найти границы, в которых находятся эти корни. В некоторых случаях можно графически доказать, что уравнение не имеет корней. По указанным причинам в школьном курсе алгебры и начал анализа под требованием «решить уравнение» понимается требование «используя методы точного решения, найти корни данного уравнения». Приближенными методами решения уравнений можно пользоваться только тогда, когда об этом говорится в условии задачи (например, если ставится задача решить уравнение графически).
В основном при решении уравнений разных видов нам придется применять один из двух методов решения. Первый из них состоит в том, что данное уравнение заменяется более простым уравнением, имеющим те же корни,— равносильным уравнением. В свою очередь, полученное уравнение заменяется еще более простым, равносильным ему, и т. д. В результате получаем простейшее уравнение, которое равносильно заданному и корни которого легко находятся. Эти корни и только они являются корнями данного уравнения.
Второй метод решения уравнений состоит в том, что данное уравнение заменяется более простым уравнением, среди корней которого находятся все корни данного, то есть так называемым уравнением-следствием. В свою очередь, полученное уравнение заменяется еще более простым уравнением-следствием, и так далее до тех пор, пока не получим простейшее уравнение, корни которого легко находятся. Тогда все корни данного уравнения находятся среди корней последнего уравнения. Поэтому, чтобы найти корни данного уравнения, достаточно корни последнего уравнения подставить в данное и с помощью такой проверки получить корни данного уравнения (и исключить так называемые посторонние корни — те корни последнего уравнения, которые не удовлетворяют заданному).
В следующем пункте будет также показано применение свойств функций к решению уравнений определенного вида.
Уравнения-следствия
Рассмотрим более детально, как можно решать уравнения с помощью уравнений-следствий. При решении уравнений главное — не потерять корни данного уравнения, и поэтому в первую очередь мы должны следить за тем, чтобы каждый корень исходного уравнения оставался корнем следующего. Фактически это и является определением уравнения-следствия:
в том случае, когда каждый корень первого уравнения является корнем второго, второе уравнение называется следствием первого.
Это определение позволяет обосновать такой ориентир: для получения уравнения-следствия достаточно рассмотреть данное уравнение как верное числовое равенство и гарантировать (то есть иметь возможность обосновать), что каждое следующее уравнение мы можем получить как верное числовое равенство.
Действительно, если придерживаться этого ориентира, то каждый корень первого уравнения обращает это уравнение в верное числовое равенство, но тогда и второе уравнение будет верным числовым равенством, то есть рассматриваемое значение переменной является корнем и второго уравнения, а это и означает, что второе уравнение является следствием первого.
Применим приведенный ориентир к уравнению 
Если правильно то, что дробь равна нулю, то обязательно ее числитель равен нулю. Таким образом, из заданного уравнения получаем уравнение-следствие 




Это происходит поэтому, что, используя уравнения-следствия, мы гарантируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не является корнем первого уравнения. Для первого уравнения этот корень является посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторонних корней рассмотрены в таблице 9.) Таким образом, чтобы правильно применять уравнения-следствия для решения уравнений, необходимо помнить еще один ориентир: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстановкой корней в исходное уравнение является составной частью решения.
Схема применения этих ориентиров дана в таблице 8. В пункте 3 этой таблицы приведено решение уравнения

Для решения этого уравнения с помощью уравнений-следствий достаточно данное уравнение рассмотреть как верное числовое равенство и учесть, что в случае когда два числа равны, то и их квадраты также будут равны:

То есть мы гарантируем, что если равенство (1) верно, то и равенство (2) также будет верным, а это и означает (как было показано выше), что уравнение (2) является следствием уравнения (1). Если мы хотя бы один раз использовали уравнения-следствия (а не равносильные преобразования), то можем получить посторонние корни, и тогда в решение обязательно входит проверка полученных корней подстановкой их в заданное уравнение.
Замечание. Переход от данного уравнения к уравнению-следствию можно обозначить специальным значком 
Равносильные уравнения
С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, которые не имели корней. Формально будем считать, что и в этом случае уравнения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом 
В курсе алгебры и начал анализа мы будем рассматривать более общее понятие равносильности, а именно: равносильность на определенном множестве.
Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни, то есть каждый корень первого уравнения является корнем второго и, наоборот, каждый корень второго уравнения является корнем первого.
Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения 




то, как было показано выше, уравнение (3) имеет единственный корень 


всех действительных чисел эти уравнения не являются равносильными, поскольку у уравнения (4) есть корень 


Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем случае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее
все равносильные преобразования уравнений (а также неравенств и систем уравнений и неравенств) мы будем выполнять на ОДЗ исходного уравнения (неравенства или системы).
Отметим, что в том случае, когда ОДЗ заданного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.
Например, для уравнения 









Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий. Как указывалось выше, выполняя равносильные преобразования уравнений, необходимо учесть ОДЗ данного уравнения — это и есть первый ориентир для выполнения равносильных преобразований уравнений. По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и, наоборот, каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантировать сохранение правильности равенства при переходе от первого уравнения ко второму.
Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и гарантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из определения равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при выполнении равносильных преобразований мы должны гарантировать сохранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым ориентиром для решения уравнений с помощью равносильных преобразований. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 8.)
Например, чтобы решить с помощью равносильных преобразований уравнение 

Запись решения в этом случае может быть такой:





Для выполнения равносильных преобразований уравнений можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности уравнений обобщим также формулировки простейших теорем о равносильности, известных из курса алгебры 7 класса.
Теорема 1. Если из одной части уравнения перенести в другую часть слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве).
Теорема 2. Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получаем уравнение, равносильное заданному (на ОДЗ заданного).
Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований данного уравнения.
Замечание. Для обозначения перехода от данного уравнения к равносильному ему уравнению можно применять специальный значок 
Пример №423
Решите уравнение 
Решение:
► ОДЗ: 
На этой ОДЗ данное уравнение равносильно уравнениям:
то есть
Учтем ОДЗ. При
Таким образом, 
Ответ:
Используем равносильные преобразования для решения данного уравнения. Для этого необходимо учесть ОДЗ, поэтому зафиксируем ее ограничения в начале решения.
Укажем, что в уравнениях ограничения ОДЗ можно только зафиксировать, но не решать, а в конце проверить, выполняются ли эти ограничения для найденных корней.
При переносе члена данного уравнения из одной части уравнения в другую с противоположным знаком получаем уравнение (1), равносильное заданному.
Приводя к общему знаменателю, раскрывая скобки и приводя подобные члены, снова получаем верное равенство и можем обосновать, что при выполнении обратных действий равенство также не нарушается, таким образом, полученные уравнения (1)-(3) равносильны заданному (на его ОДЗ).
Дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю. Но второе условие уже учтено в ограничениях ОДЗ, таким образом, получаем уравнение (4), равносильное заданному уравнению на его ОДЗ. Поскольку все преобразования были равносильными только с учетом ОДЗ, то мы должны проверить, удовлетворяет ли полученное число ограничениям ОДЗ.
Причины появления посторонних корней и потери корней при решении уравнений
Наиболее типичные случаи появления посторонних корней и потери корней приведены в таблице 9. Там же указано, как в каждом из этих случаев получить правильное (или полное) решение.
Применение свойств функций к решению уравнений
1. Конечная ОДЗ
Если область допустимых значений (ОДЗ) уравнения (неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения
Пример:




2. Оценка левой и правой частей уравнения
Если надо решить уравнение вида 



Пример:
►


Итак, заданное уравнение равносильно системе
Сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю
Пример:
►
Итак, заданное уравнение равносильно системе
Из первого уравнения получаем 
3. Использование возрастания и убывания функций
Схема решения уравнения
1. Подбираем один или несколько корней уравнения.
2. Доказываем, что других корней это уравнение не имеет (используя теоремы о корнях уравнения или оценку левой и правой частей уравнения)
Теоремы о корнях уравнения
Если в уравнении 

Пример:
Уравнение 



Если в уравнении 


Пример:
Уравнение 








Объяснение и обоснование:
Конечная ОДЗ
Напомним, что в случае, когда дано уравнение 











Рассмотренный пример позволяет выделить ориентир для решения аналогичных уравнений:
если ОДЗ уравнения (а также неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения.
Замечание. В том случае, когда ОДЗ — пустое множество (не содержит ни одного числа), мы можем сразу дать ответ, что данное уравнение не имеет корней.
Например, если необходимо решить уравнение 


Оценка левой и правой частей уравнения
Некоторые уравнения можно решить с помощью оценки левой и правой частей уравнения.
Пусть дано уравнение 



Рассмотрим два случая:
Если 















Коротко это можно записать так:
Пример использования такого приема решения уравнений приведен в пункте 2 таблицы 10.
Аналогично предыдущим рассуждениям обосновывается и ориентир по решению уравнения 

Если предположить, что 



Например, чтобы решить уравнение 


Из второго уравнения получаем 

Использование возрастания и убывания функций к решению уравнений
Использование возрастания и убывания функций к решению уравнений опирается на такое свойство: возрастающая или убывающая функция принимает каждое свое значение только в одной точке ее области определения.
Полезно помнить специальные теоремы о корнях уравнения.
Теорема 1. Если в уравнении 

Графически утверждение теоремы проиллюстрировано на рисунке 52. Прямая 




• Если на промежутке 










Теорема 2. Если в уравнении 


Графически утверждение теоремы проиллюстрировано на рисунке 53.
• Если на промежутке 









Каждая из этих теорем утверждает, что в рассмотренном промежутке данное уравнение может иметь не более чем один корень, то есть или это уравнение совсем не имеет корней, или оно имеет единственный корень. Если нам удалось подобрать один корень такого уравнения, то других корней в заданном промежутке уравнение не имеет.
Например, чтобы решить уравнение 









Заметим, что каждая из этих теорем гарантирует единственность корня уравнения (если он есть) только на промежутке возрастания (или убывания) соответствующей функции. Если функция имеет несколько промежутков возрастания и убывания, то приходится рассматривать каждый из них отдельно.
Пример:
Решим с помощью теоремы 2 уравнение 
► Сначала следует учесть его ОДЗ: 



1) При 









2) При 







Примеры решения задач:
Пример №424
Решите уравнение 
Решение:
► ОДЗ: 



Таким образом, данное уравнение равносильно системе 


Если раскрыть скобки и привести обе части уравнения к общему знаменателю, то для нахождения корней полученного уравнения придется решать полное уравнение восьмой степени, все корни которого мы не сможем найти.
Попытаемся оценить области значений функций, стоящих в левой и правой частях уравнения. Поскольку на ОДЗ 


Пример №425
Решите систему уравнений
Решение:
► ОДЗ: 




Подставляя 





Иногда свойства функций удается применить при решении систем уравнений. Если заметить, что в левой и правой частях первого уравнения заданной системы стоят значения одной и той же функции, которая является возрастающей (как сумма двух возрастающих функций), то равенство 

Замечание. Утверждение, обоснованное в комментарии к задаче 2, может быть использовано при решении аналогичных задач. Коротко его можно сформулировать так: если функция 
| Рекомендую подробно изучить предметы: |
|
| Ещё лекции с примерами решения и объяснением: |
- Метод математической индукции
- Система координат в пространстве
- Иррациональные числа
- Действительные числа
- Интеграл и его применение
- Первообразная и интегра
- Уравнения и неравенства
- Уравнения и неравенства содержащие знак модуля
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Лекция 26. Уравнения с одной переменной
1. Понятие уравнения с одной переменной
2. Равносильные уравнения. Теоремы о равносильности уравнений
3. Решение уравнений с одной переменной
Уравнения с одной переменной
Возьмем два выражения с переменной: 4 х и 5 х + 2. Соединив их знаком равенства, получим предложение 4х = 5 х + 2. Оно содержит переменную и при подстановке значений переменной обращается в высказывание. Например, при х = -2 предложение 4х = 5 х + 2 обращается в истинное числовое равенство 4 ·(-2) = 5 ·(-2) + 2, а при х = 1 — в ложное 4·1 = 5·1 + 2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.
В общем виде уравнение с одной переменной можно определить так:
Определение. Пусть f(х) и g(х) — два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) =g(х) называется уравнением с одной переменной.
Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения (или его решением). Решить уравнение — это значит найти множество его корней.
Так, корнем уравнения 4х = 5х + 2, если рассматривать его на множестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть .
Пусть на множестве действительных чисел задано уравнение (х — 1)(х + 2) = 0. Оно имеет два корня — числа 1 и -2. Следовательно, множество корней данного уравнения таково: .
Уравнение (3х + 1)-2 = 6 х + 2, заданное на множестве действительных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х: если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.
Уравнение (3х + 1)·2 = 6 х + 1, заданное на множестве действительных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6 х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имееткорней и что множество его корней пусто.
Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.
Дата добавления: 2016-05-11 ; просмотров: 3460 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Видео:Комплексные корни квадратного уравненияСкачать

Учебное пособие: Комплексные числа
| Название: Комплексные числа Раздел: Рефераты по математике Тип: учебное пособие Добавлен 13:49:20 12 июня 2011 Похожие работы Просмотров: 45866 Комментариев: 26 Оценило: 7 человек Средний балл: 4.3 Оценка: 4 Скачать | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| _ | ![]() | ![]() | _ | ![]() | ![]() | |||||||||
![]() | ![]() | ![]() | ![]() | |||||||||||
| _ | ![]() | _ | ![]() | |||||||||||
![]() | ![]() | |||||||||||||
| _ | ![]() | ![]() | ||||||||||||
![]() | ![]() | |||||||||||||
![]() | ![]() | |||||||||||||
Всякий многочлен степени n ³ 1 имеет, по крайней мере, один нуль, действительный или комплексный
Доказательство этой теоремы выходит за рамки нашего курса. Поэтому примем теорему без доказательства.
Поработаем по этой теореме и по теореме Безу с многочленом Pn (x ).
После n -кратного применения этих теорем получим, что

гдеa 0 — это коэффициент при x n в Pn (x ).
Следствие из основной теоремы алгебры. О разложении многочлена на линейные множители
Любой многочлен степени 

гдех1, х2, … хn — это нули многочлена.
При этом если k чисел из набора х 1, х 2, … хn совпадают между собой и с числом a, то в произведении (6) получается множитель (x – a)k . Тогда число x = a называется k-кратным нулем многочлена Pn ( x ) . Если k = 1, то нуль называется простым нулем многочлена Pn ( x ) .
1)P 4(x ) = (x – 2)(x – 4)3 Þx 1 = 2 — простой нуль, x 2 = 4 — трехкратный нуль;
Свойство 4 (о количестве корней алгебраического уравнения)
Любое алгебраическое уравнение Pn(x) = 0 степени n имеет на множестве комплексных чисел ровно n корней, если считать каждый корень столько раз, какова его кратность.
1)x 2 – 4x + 5 = 0 — алгебраическое уравнение второй степени
Þx 1,2 = 2 ± 
2)x 3 + 1 = 0 — алгебраическое уравнение третьей степени
Þx 1,2,3 = 
Разделим многочлен P 3(x ) на (x – 1):
| x 3 | + | x 2 | – | x | – | 1 | x – 1 |
| x 3 | – | x 2 | x 2 + 2x +1 | ||||
| 2x 2 | – | x | |||||
| 2x 2 | – | 2x | |||||
| x | – | 1 | |||||
| x | – | 1 | |||||
| 0 |
Þx 1 = 1 — простой корень, x 2 = –1 — двукратный корень.
Если алгебраическое уравнение с действительными коэффициентами имеет комплексные корни, то эти нули всегда парные комплексно сопряженные, то есть если x 0 = a + bi является корнем уравнения Pn (x ) = 0, то число 
w нужно использовать определение и следующие легко проверяемые свойства операции комплексного сопряжения:
если 





если 

Так как 




Возьмем сопряжение от обеих частей последнего равенства и используем перечисленные свойства операции сопряжения:



1) 

2) 
Любой многочлен с действительными коэффициентами разлагается на произведение линейных и квадратичных функций с действительными коэффициентами.
w Пусть x 0 = a + bi — нуль многочлена Pn (x ). Если все коэффициенты этого многочлена являются действительными числами, то 
Вычислим произведение двучленов 
комплексный число многочлен уравнение
Получили (x – a )2 + b 2 — квадратный трехчленс действительными коэффициентами.
Таким образом, любая пара двучленов с комплексно сопряженными корнями в формуле (6) приводит к квадратному трехчлену с действительными коэффициентами. v
Примеры решения алгебраических уравнений на множестве комплексных чисел (Приведите примеры решения алгебраических уравнений на множестве комплексных чисел )
1. Алгебраические уравнения первой степени:




Ответ: 
2. Квадратные уравнения:



1) 
Ответ: 
2) 
Ответ: 
3) 

Ответ: 

3. Двучленные уравнения степени 








Ответ: 

4. Решить кубическое уравнение 
Уравнение третьей степени 
Подбором находим первый корень уравнения 

По следствию из теоремы Безу 
| _ | ![]() | ![]() | |||
![]() | ![]() | ||||
| _ | ![]() | ||||
![]() | |||||
| _ | ![]() | ||||
![]() | |||||
![]() | |||||
Представляя теперь многочлен 

Другие корни находим как корни квадратного уравнения:

Ответ: 

5. Составить алгебраическое уравнение наименьшей степени с действительными коэффициентами, если известно, что числа x 1 = 3 и x 2 = 1 + i являются его корнями, причем x 1 является двукратным корнем, а x 2 — простым.
Число 
Всего искомое уравнение имеет 4 корня: x 1, x 1, x 2, 



Искомое уравнение имеет вид P 4(x ) = 0.
Ответ: 
1. Сформулируйте определение комплексного числа
3. Какое название или смысл имеет формула?
4. Поясните смысл обозначений в этой формуле:
5. ⌂ 
7. Что такое действительная часть комплексного числа z?
9. Что такое комплексно сопряженное число?
11. Что такое комплексный ноль?
13. Сформулируйте смысл комплексного равенства.
15. Что такое модуль и аргумент комплексного числа?
17. Что такое аргумент комплексного числа?
18. Какое название или смысл имеет формула?
19. Поясните смысл обозначений в этой формуле:
20. ⌂ 
21. Что такое алгебраическая и тригонометрическая формы комплексного числа?
22. Какое название или смысл имеет формула?
23. Поясните смысл обозначений в этой формуле:
24. ⌂ 
25. Что называется алгебраической формой комплексного числа?
27. Дайте определения и перечислите основные свойства арифметических действий над комплексными числами.
28. Какое название или смысл имеет формула?
29. Поясните смысл обозначений в этой формуле:
31. Какое название или смысл имеет формула?
32. Поясните смысл обозначений в этой формуле:
33. ⌂ 
34. Какое название или смысл имеет формула?
35. Поясните смысл обозначений в этой формуле:
36. ⌂ 
37. Что такое формула Муавра?
38. Какое название или смысл имеет формула?
39. Поясните смысл обозначений в этой формуле:
40. ⌂ 
41. Что называется корнем степени n из комплексного числа?
42. Какое название или смысл имеет формула?
43. Поясните смысл обозначений в этой формуле:
44. ⌂ 
45. Что называется показательной формой комплексного числа?
46. Какое название или смысл имеет формула?
47. Поясните смысл обозначений в этой формуле:
48. ⌂ 
49. Что такое формулы Эйлера?
50. Какое название или смысл имеет формула?
51. Поясните смысл обозначений в этой формуле:
52. ⌂ 
53. Что называется целой функцией?
55. Что называется полиномом?
57. Что такое коэффициенты многочлена?
59. Что называется нулем функции?
61. Перечислите основные свойства многочленов.
63. Сформулируйте свойство о делении многочлена на разность (x – х0).
64. Сформулируйте теорему теорема Безу .
65. Какое название или смысл имеет формула?
66. Поясните смысл обозначений в этой формуле:
67. ⌂ 
69. Сформулируйте теорему теорема алгебры основная.
70. Какое название или смысл имеет формула?
71. Поясните смысл обозначений в этой формуле:
72. ⌂ 
73. Что называется k-кратным нулем многочлена?
75. Сформулируйте свойство о количестве корней алгебраического уравнения.
78. Сформулируйте свойство о разложении многочлена с действительными коэффициентами на линейные и квадратичные множители.
k-кратным нулем многочлена называется. (стр. 18)
алгебраическим многочленом называется. (стр. 14)
алгебраическим уравнением n-й степени называется. (стр. 14)
алгебраической формой комплексного числа называется. (стр. 5)
аргумент комплексного числа это. (стр. 4)
действительная часть комплексного числа z это. (стр. 2)
комплексно сопряженное число это. (стр. 2)
комплексный ноль это. (стр. 2)
комплексным числом называется. (стр. 2)
корнем степени n из комплексного числа называется. (стр. 10)
корнем уравнения называется. (стр. 14)
коэффициенты многочлена это. (стр. 14)
мнимая единица это. (стр. 2)
мнимая часть комплексного числа z это. (стр. 2)
модулем комплексного числа называется. (стр. 4)
нулем функции называется. (стр. 14)
показательной формой комплексного числа называется. (стр. 11)
полиномом называется. (стр. 14)
простым нулем многочлена называется. (стр. 18)
противоположное число это. (стр. 2)
степень многочлена это. (стр. 14)
тригонометрической формой комплексного числа называется. (стр. 5)
💥 Видео
Комплексные корни квадратных уравнений. 11 класс.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

10 класс, 4 урок, Множество действительных чиселСкачать

10 класс, 5 урок, Модуль действительного числаСкачать

10 класс, 35 урок, Комплексные числа и квадратные уравненияСкачать

Как решать дробно-рациональные уравнения? | МатематикаСкачать

Биквадратное уравнение. Комплексные корни.Скачать

Алгебра 10 класс (Урок№15 - Действительные числа.)Скачать

Дробно-рациональные уравнения. 8 класс.Скачать

Натуральные числа, целые числа, рациональные числа, иррациональные числа и действительные числаСкачать

Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Формула Кардано. Решение уравнений третьей степени.Скачать

Математика, 6-й класс, Решение уравнений на множестве ZСкачать

Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать








































Комплексное число в алгебраической форме,(1)
— комплексно сопряженное число числу z ;
— противоположное число числу z ;
— комплексный ноль ;
– так обозначается множество комплексных чисел.
= 1 – i,
= –1 – i ;
i Þ Re z = –1, Im z =
,
= –1 –
;
.

;

.

Знак z во второй четверти означает, что система декартовых координат
будет использоваться как комплексная плоскость.
называется неотрицательное действительное число
.(2)
, причем
, или
.
Аргумент комплексного числа ,(3)
по его тангенсу обязательно нужно учитывать, в какой четверти на комплексной плоскости расположено число z :
и
, то
Тригонометрическая форма комплексного числа .(4)
,
Þ
;
Þ
,
Þ
;
Þ
,
Þ
Þ
;
,
;
,
;
,
, j не определен.
.
и приведением подобных по действительным и мнимым слагаемым.
.
.
Деление комплексных чисел в алгебраической форме .(7)
Деление комплексных чисел в тригонометрической форме .(8)
;
.


Формула Муавра,(9)
или
сбрасыванием целого числа полных оборотов по свойствам периодичности функций
и
.
называют главным значением аргумента комплексного числа
;
;
,
.
N, называется комплексное число w , такое что w n = z 
.
, так как
;
, так как
;
или
, так как
и
.
существует при «z и если z ¹ 0, то
Извлечение корня натуральной степени из комплексного числа ,(10)
,
— арифметический корень на
.
расположены регулярным образом на окружности радиусом
и углом регулярности
.
, k = 0, 1, 2 Þ
,
,
.

, 

.
называется форма
Показательная форма комплексного числа,(11)
.
;
;
.
,(12)
,(13)
,(14)
,
.(15)
,
.
;
;
;
, 


являются вершинами правильного пятиугольника, вписанного в окружность радиуса
.
Þ
,
,
.
Формулы Эйлера(16)
и
действительной переменной
выражаются через показательную функцию (экспоненту) с чисто мнимым показателем.
.(1)
;
;
,
– квадратный трехчлен;
,
.
-й степени
(2)
.
– алгебраическое уравнение первой степени,
;
– алгебраическое уравнение седьмой степени,
,
,
.
и
являются нулями функции
, так как
и
.
называются ее корнями. Например, числа
.
(3)
.
(или «xÎ
)
; подставляя
.(3’)
.
при 
.
Теорема Безу,(4)
Þ 

.(5)
, так какP 3(1) º 0
.
, так какP 4(–2) º 0
.
, так какP 2(–1/2) º 0
.












































