Описание метода выделения полного квадрата
§2. Выделение полного квадрата из квадратного трёхчлена
Описание метода выделения полного квадрата
Выражения вида 2 x 2 + 3 x + 5 , `-4x^2+5x+7` носят название квадратного трёхчлена. В общем случае квадратным трёхчленом называют выражение вида a x 2 + b x + c , где a , b , c a, b, c – произвольные числа, причём a ≠ 0 .
Рассмотрим квадратный трёхчлен x 2 — 4 x + 5 . Запишем его в таком виде: x 2 — 2 · 2 · x + 5 . Прибавим к этому выражению 2 2 и вычтем 2 2 , получаем: x 2 — 2 · 2 · x + 2 2 — 2 2 + 5 . Заметим, что x 2 — 2 · 2 · x + 2 2 = ( x — 2 ) 2 , поэтому
x 2 — 4 x + 5 = ( x — 2 ) 2 — 4 + 5 = ( x — 2 ) 2 + 1 .
Преобразование, которое мы сделали, носит название «выделение полного квадрата из квадратного трёхчлена».
Выделите полный квадрат из квадратного трёхчлена 9 x 2 + 3 x + 1 .
Заметим, что 9 x 2 = ( 3 x ) 2 , `3x=2*1/2*3x`. Тогда
Прибавим и вычтем к полученному выражению `(1/2)^2`, получаем
Покажем, как применяется метод выделения полного квадрата из квадратного трёхчлена для разложения квадратного трёхчлена на множители.
Разложите на множители квадратный трёхчлен 4 x 2 — 12 x + 5 .
Выделяем полный квадрат из квадратного трёхчлена:
2 x 2 — 2 · 2 x · 3 + 3 2 — 3 2 + 5 = 2 x — 3 2 — 4 = ( 2 x — 3 ) 2 — 2 2 .
Теперь применяем формулу a 2 — b 2 = ( a — b ) ( a + b ) , получаем:
( 2 x — 3 — 2 ) ( 2 x — 3 + 2 ) = ( 2 x — 5 ) ( 2 x — 1 ) .
Разложите на множители квадратный трёхчлен — 9 x 2 + 12 x + 5 .
— 9 x 2 + 12 x + 5 = — 9 x 2 — 12 x + 5 . Теперь замечаем, что 9 x 2 = 3 x 2 , — 12 x = — 2 · 3 x · 2 .
Прибавляем к выражению 9 x 2 — 12 x слагаемое 2 2 , получаем:
— 3 x 2 — 2 · 3 x · 2 + 2 2 — 2 2 + 5 = — 3 x — 2 2 — 4 + 5 = — 3 x — 2 2 + 4 + 5 = = — 3 x — 2 2 + 9 = 3 2 — 3 x — 2 2 .
Применяем формулу для разности квадратов, имеем:
— 9 x 2 + 12 x + 5 = 3 — 3 x — 2 3 + ( 3 x — 2 ) = ( 5 — 3 x ) ( 3 x + 1 ) .
Разложите на множители квадратный трёхчлен 3 x 2 — 14 x — 5 .
Мы не можем представить выражение 3 x 2 как квадрат какого-то выражения, т. к. ещё не изучали этого в школе. Это будете проходить позже, и уже в Задании №4 будем изучать квадратные корни. Покажем, как можно разложить на множители заданный квадратный трёхчлен:
Покажем, как применяется метод выделения полного квадрата для нахождения наибольшего или наименьшего значений квадратного трёхчлена.
Рассмотрим квадратный трёхчлен x 2 — x + 3 . Выделяем полный квадрат:
`(x)^2-2*x*1/2+(1/2)^2-(1/2)^2+3=(x-1/2)^2+11/4`. Заметим, что при `x=1/2` значение квадратного трёхчлена равно `11/4`, а при `x!=1/2` к значению `11/4` добавляется положительное число, поэтому получаем число, большее `11/4`. Таким образом, наименьшее значение квадратного трёхчлена равно `11/4` и оно получается при `x=1/2`.
Найдите наибольшее значение квадратного трёхчлена — 16 x 2 + 8 x + 6 .
Выделяем полный квадрат из квадратного трёхчлена: — 16 x 2 + 8 x + 6 = — 4 x 2 — 2 · 4 x · 1 + 1 — 1 + 6 = — 4 x — 1 2 — 1 + 6 = = — 4 x — 1 2 + 7 .
При `x=1/4` значение квадратного трёхчлена равно 7 , а при `x!=1/4` из числа 7 вычитается положительное число, то есть получаем число, меньшее 7 . Таким образом, число 7 является наибольшим значением квадратного трёхчлена, и оно получается при `x=1/4`.
Разложите на множители числитель и знаменатель дроби `/` и сократите эту дробь.
Заметим, что знаменатель дроби x 2 — 6 x + 9 = x — 3 2 . Разложим числитель дроби на множители, применяя метод выделения полного квадрата из квадратного трёхчлена.
x 2 + 2 x — 15 = x 2 + 2 · x · 1 + 1 — 1 — 15 = x + 1 2 — 16 = x + 1 2 — 4 2 = = ( x + 1 + 4 ) ( x + 1 — 4 ) = ( x + 5 ) ( x — 3 ) .
Данную дробь привели к виду `/(x-3)^2` после сокращения на ( x — 3 ) получаем `(x+5)/(x-3)`.
Разложите многочлен x 4 — 13 x 2 + 36 на множители.
Применим к этому многочлену метод выделения полного квадрата.
Разложите на множители многочлен 4 x 2 + 4 x y — 3 y 2 .
Применяем метод выделения полного квадрата. Имеем:
( 2 x ) 2 + 2 · 2 x · y + y 2 — y 2 — 3 y 2 = ( 2 x + y ) 2 — 2 y 2 = = ( 2 x + y + 2 y ) ( 2 x + y — 2 y ) = ( 2 x + 3 y ) ( 2 x — y ) .
Применяя метод выделения полного квадрата, разложите на множители числитель и знаменатель и сократите дробь `/`.
Видео:7 класс, 25 урок, Метод выделения полного квадратаСкачать
Разложение многочленов на множители. Метод выделения полного квадрата. Комбинация методов
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На данном уроке мы вспомним все ранее изученные методы разложения многочлена на множители и рассмотрим примеры их применения, кроме того, изучим новый метод — метод выделения полного квадрата и научимся применять его при решении различных задач.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Упрощение выражений»
Видео:Полный квадрат. Где и когда он может пригодиться? | Математика TutorOnlineСкачать
Решение уравнений методом выделения полного квадрата примеры
- Главная
- Список секций
- Математика
- Основные способы решения полных квадратных уравнений
Видео:Метод выделения полного квадрата. 8 класс.Скачать
Основные способы решения полных квадратных уравнений
Автор работы награжден дипломом победителя III степени
Актуальность выбранной темы продиктована желанием показать разнообразие способов решения квадратных уравнений. Необходимость решать уравнения первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площади земельного участка и с земляными работами военного характера, а также с развитием астрономии и самой математики.
Начиная с 8 класса, умение решать квадратные уравнения является основополагающим, так как они находят широкое применение в решении тригонометрических, логарифмических, иррациональных, показательных и других видов уравнений. Квадратное уравнение широко распространено: во многих строительных и архитектурных расчётах, сооружениях, спорте, описании траектории движения планет. Поэтому исследование способов решения полных квадратных уравнений считаю актуальным.
Проблема: какие существуют способы решения полных квадратных уравнений?
Цель работы: изучить и систематизировать способы решения полных квадратных уравнений.
Изучить литературу по теме исследования.
Выбрать и изучить способы решения полных квадратных уравнений.
Объект исследования: полные квадратные уравнения.
Методы исследования: теоретический (изучение литературы), математический (построение графиков, вычисления).
Рассмотрим основные способы решения таких уравнений в нашей работе.
2.1 Квадратное уравнение: определение, виды, способы решения
Квадратным уравнением называется уравнение вида ax ² + bx + c =0, где х-переменная, a , b и c – некоторые числа, причём а¹0. Коэффициенты имеют свои названия: а – первый или старший коэффициент, в – второй коэффициент, с – свободный член. Если а=1, то уравнение называется приведённым. Если в=0 или с=0, то квадратное уравнение называют неполным (рис.1).
Рис.1 Виды квадратных уравнений
Примеры полных квадратных уравнений: 3x 2 -5x+2=0, x 2 -16x+24=0;
неполные: x 2 + 3x=0, 2x 2 — 128=0, 62x 2 = 0.
Корнями квадратного уравнения называются значения переменной, при которых уравнение обращается в верное равенство. Квадратное уравнение может иметь два, один или ни одного корня. [1]
В школьном курсе математики изучается несколько способов решения полных квадратных уравнений. Однако имеются и другие способы, которые позволяют очень быстро и рационально решать многие уравнения, всего насчитывается более десятка способов. Рассмотрим основные: решение квадратных уравнений по формуле, решение уравнения выделением полного квадрата, решение уравнения путём разложения левой части на множители, решение с помощью теоремы Виета и графический способ. Но сначала обратимся к историческим сведениям: как давно возникли квадратные уравнения и как их решали раньше?
2.2 Из истории квадратных уравнений
Квадратные уравнения в Индии.
Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабахаттой. Другой индийский ученый, Брахмагупта ( VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:
ах 2 + b х = с, а > 0
В уравнении все коэффициенты, кроме а, могут быть отрицательными. Правило Брахмагупта (приложение 1) по существу совпадает с ныне существующими.
Квадратные уравнения в Древнем Вавилоне
Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Если применить современную алгебраическую запись, то в их клинописных текстах можно встретить неполные и полные квадратные уравнения, например:
х 2 + х = , х 2 – х = 14
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. [5]
Квадратные уравнения в Европе XIII — XVII вв.
Формулы решения квадратных уравнений по образцу аль-Хорезми (приложение 1) в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардо Фибоначчи. Этот объемный труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошёл к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII век.
Общее правило решения квадратных уравнений, приведённых к единому каноническому виду
при всевозможных комбинациях знаков коэффициентов b и с было сформулировано в Европе лишь в 1544г. М.Штифелем.
Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, кроме положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других учёных способ решения квадратных уравнений принимает современный вид. [3]
2.3 Решение квадратных уравнений по формуле
Решение квадратных уравнений сводится к нахождению дискриминанта, чтобы определить количество корней: D=b 2 — 4aс.
Если D>0, то уравнение имеет два корня и находим эти корни по формуле:
Если D=0, то уравнение имеет один корень
Рассмотрим пример 1: нужно найти корни уравнения 3x 2 — 2x — 16=0.
Записываем сначала, чему равны числовые коэффициенты a, b и c:
a=3,b= -2,c= -16. Находим дискриминант: D=b 2 -4ac = (-2) 2 -4∙2∙(-16)=4+192=196
Дискриминант больше нуля, следовательно, у нас два корня, найдем их:
Х1= (2 – 14) /6 = -2 Х2 = (2 + 14) /6 = 8/3
Рассмотрим пример 2: найти корни уравнения x 2 — 6x + 11=0.
a=1,b= -6,c= 11. Находим дискриминант: D=b 2 -4ac = (-6) 2 -4∙1∙11= 36 — 44= — 8
Дискриминант меньше нуля, следовательно, корней нет.
Ответ: корней нет.
Рассмотрим пример 3: найти корни уравнения 4x 2 — 12x + 9=0.
a=4,b= -12,c= 9. Находим дискриминант: D=b 2 -4ac = (-12) 2 -4∙4∙9= 144 -144= 0
Дискриминант равен нулю, следовательно, у нас один корень:
2.4 Решение квадратных уравнений методом выделения полного квадрата
Поясним этот метод на примере 4: решим уравнение х 2 + 6х – 7 = 0.
Выделим в левой части полный квадрат. Для этого запишем выражение
х 2 + 6х в виде: х 2 + 6х = х 2 + 2· х ·3.
В полученном выражении первое слагаемое – квадрат числа х, а второе – удвоенное произведение х на 3, поэтому, чтобы получить полный квадрат, нужно прибавить 3 2 , так как х 2 + 2· х ·3 + 3 2 = (х + 3) 2 .
Преобразуем теперь левую часть уравнения х 2 + 6х – 7 = 0, прибавляя к ней и вычитая 3 2 . Имеем:
х 2 + 6х – 7 = х 2 + 2· х ·3 + 3 2 – 3 2 – 7 = (х + 3) 2 – 9 – 7 = (х + 3) 2 – 16.
Таким образом, данное уравнение можно записать так:
(х + 3) 2 –16 = 0, т.е. (х + 3) 2 = 16.
Следовательно, х + 3 = 4, х1 = 1, или х + 3 = — 4 , х2 = – 7.
2.5 Разложение левой части квадратного уравнения на множители
Рассмотрим пример 5: решим уравнение х 2 + 10х – 24 = 0.
Разложим левую часть уравнения на множители:
х 2 + 10х – 24 = х 2 + 12х – 2х – 24 = х(х + 12) – 2(х +12) = (х + 12)(х – 2).
Следовательно, уравнение можно переписать так:
Так как произведение равно нулю, то, по крайне мере один из его множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х = 2, а также при х = — 12. Это означает, что числа 2 и – 12 являются корнями уравнения х 2 + 10х – 24 = 0.
2.6 Графический способ решения
Если в уравнении x 2 + bx + c = 0
перенести второй и третий члены в правую часть, то получим x 2 = – bx – c .
Построим графики зависимостей у = х 2 и у = – bx – c .
График первой зависимости – парабола, проходящая через начало координат.
График второй зависимости – прямая. Возможны следующие случаи:
прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;
прямая и парабола могут касаться (только одна общая точка), т.е. уравнение имеет одно решение;
прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней. [2]
Пример 6: решим графически уравнение х 2 –3х – 4 = 0.
Запишем уравнение в виде х 2 = 3х + 4. Построим параболу у = х 2 и прямую у = 3х + 4. Прямую у = 3х + 4 можно построить по двум точкам М(0;4) и N (3;13).
Прямая и парабола пересекаются в двух точках А и B с абсциссами х1 = – 1 и х2 = 4. (Рис.2)
2.7 Решение квадратных уравнений с помощью теоремы Виета
1. Приведенное квадратное уравнение имеет вид х 2 + px + q = 0.
Его корни удовлетворяют теореме Виета, которая при а = 1 имеет вид
Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).
Если свободный член q приведенного уравнения положителен ( q >0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента p .
Если p >0, то оба корня отрицательные, если p 2 – 3х + 2 = 0; х1 = 2 и х2 = 1, так как q = 2 > 0 и p = – 3 2 +8х + 7 = 0; х1 = – 7 и х2 = – 1, так как q = 7 > 0 и p = 8 >0.
Если свободный член q приведенного уравнения отрицателен ( q p p >0.
х 2 + 4х – 5 = 0; х1 = – 5 и х2 = 1, так как q = – 5 p = 4 > 0;
х 2 – 8х – 9 = 0; х1 = 9 и х2 = – 1, так как q = – 9 p = – 8 >0.
2. Теорема Виета для квадратного уравнения ах 2 + b х +с = 0 имеет вид
Справедлива теорема, обратная теореме Виета:
Если числа х1 и х2 таковы, что х1+х2 = — b , х1х2 = c , то х1 и х2 – корни квадратного уравнения х 2 + b х + c = 0.
Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней. [4]
Пример 7: решим уравнение х 2 – 9х + 14 =0.
Найдём два числа х1 и х2 , такие, что
Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.
При решении квадратного уравнения не надо ограничиваться одним
способом решения уравнения, который изучается в школьном курсе математики, а для каждой ситуации можно использовать свой способ решения.
Особенно популярным способом является решение квадратного уравнения по формуле и теорема Виета. Изучив материалы для подготовки к ГИА, я пришла к выводу: материалы содержат много квадратных уравнений, при решении которых можно использовать различные способы.
Интересным для меня оказался графический способ решения квадратного уравнения. Но недостаток этого способа – не всегда значения абсцисс точек пересечения графиков будут являться целыми и точными значениями.
Более подробно изучив тему «Решение полных квадратных уравнений», я углубила знания в истории развития математики и открыла много полезного и нового для себя. Кроме вышеперечисленных мною основных способов решения квадратных уравнений в разных источниках выделяют ещё: решение уравнений способом «переброски», решение с помощью циркуля и линейки, решение с помощью номограммы, геометрический способ и использование свойств коэффициентов квадратного уравнения.
Такая широкая тема позволяет всем желающим находить в книгах, научных журналах, сайтах всё новые пути решения уравнений, создавать основу для дальнейших исследований в мире математики, получать необходимые интересующие сведения, применение которых на практике способствует развитию мышления и повышению уровня знаний. Каждый из способов удобен по-своему, интересен и значим в общей копилке умений каждого.
Список использованных источников и литературы
Мерзляк А.Г. Алгебра: 8 класс: учебник для общеобразовательных организаций/А.Г.Мерзляк, В.Б.Полонский, М.С.Якир. – М.:Вентана – Граф, 2017.
Окунев А.К. Квадратичные функции, уравнения и неравенства / Пособие для учителя. — М.: Просвещение, 2016.
Соломник В.С., Милов П.И. Сборник вопросов и задач по математике. Изд. — 4-е, дополн. — М.: Высшая школа, 2017.
Якушева Г.Н. Математика. Справочник школьника. — М., Просвещение, 2015.
История возникновения квадратных уравнений: [Электронный ресурс]. URL : https://ru.wikipedia.org/wiki/Квадратное_уравнение (Дата обращения 26.03.2019).
Индийский математик Брахмагупта и среднеазиатский учёный, математик, астроном Абу́ Абдулла́х Муха́ммад ибн Муса́ аль-Хорезми́
💥 Видео
Выделение полного квадратаСкачать
2017-02-13 Алгебра 7 класс. Выделение полного квадрата.Скачать
Математика Без Ху!ни. Метод выделения полного квадрата.Скачать
Математика - Выделение полного квадратаСкачать
Метод выделения полного квадрата / Как решать квадратные уравнения?Скачать
Алгебра 7 класс (Урок№28 - Выделение полного квадрата.)Скачать
Алгебра 8 класс Метод выделения полного квадратаСкачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Математика| Разложение квадратного трехчлена на множители.Скачать
ВЫДЕЛЕНИЕ ПОЛНОГО КВАДРАТА 8 классСкачать
Метод выделения полного квадратаСкачать
Видеоурок "Выделение полного квадрата"Скачать
Решение уравнения методом выделения полного квадратаСкачать
Выделение квадрата двучленаСкачать
8 класс. Метод выделения полного квадрата. Алгебра.Скачать
Метод выделения полного квадрата | Квадратные уравненияСкачать
Решение кв. ур-ний методом выделения полного квадратаСкачать