Матричный метод может применяться в решении систем линейных уравнений, в которых число неизвестных равно числу уравнений, то есть систем линейных уравнений с квадратной матрицей коэффициентов при неизвестных.
Другое условие применимости матричного метода — невырожденность матрицы коэффициентов при неизвестных, то есть неравенство нулю определителя этой матрицы.
Систему линейных уравнений, при выполнении вышеназванных условий, можно представить в матричном виде, а затем решить её путём отыскания обратной матрицы к матрице системы.
Решение систем линейных уравнений матричным методом основано на следующем свойстве обратной матрицы: произведение обратной матрицы и исходной матрицы равно единичной матрице. Обратная матрица обозначается символом .
Пусть нужно решить систему линейных уравнений:
Запишем эту систему уравнений в матричном виде:
Обозначим отдельно как A матрицу коэффициентов при неизвестных и как B матрицу неизвестных и матрицу свободных членов
.
То есть, для нахождения решений системы нужно обе части уравнения умножить на матрицу, обратную матрице коэффициентов при неизвестных и приравнять соответствующие элементы полученных матриц.
Алгоритм решения системы линейных уравнений матричным методом разберём на следующем примере системы линейных уравнений второго порядка.
Пример 1. Решить матричным методом систему линейных уравнений:
Решение состоит из следующих шагов.
Шаг 1. Составляем следующие матрицы.
Матрица коэффициентов при неизвестных:
Матрица свободных членов:
Это сделано для того, чтобы применить в решении уже записанные закономерности, основанные на свойстве обратной матрицы:
По выведенному выше последнему равенству и будем вычислять решения данной системы.
Но сначала проверим, не является ли матрица коэффициентов при неизвестных вырожденной, то есть можем ли вообще применять матричный метод:
.
Определитель этой матрицы не равен нулю, следовательно, можем применять матричный метод.
Шаг 2. Находим матрицу, обратную матрице коэффициентов при неизвестных:
.
Шаг 3. Находим матрицу неизвестных:
Итак, получили решение:
.
Следовательно, ответ правильный.
Для второго примера выберем систему линейных уравнений третьего порядка.
Пример 2. Решить матричным методом систему линейных уравнений:
Шаг 1. Составляем следующие матрицы.
Матрица коэффициентов при неизвестных:
Матрица свободных членов:
Проверим, не является ли матрица коэффициентов при неизвестных вырожденной:
.
Определитель этой матрицы не равен нулю, следовательно, можем применять матричный метод.
Шаг 2. Находим матрицу, обратную матрице коэффициентов при неизвестных:
.
Шаг 3. Находим матрицу неизвестных:
Итак, получили решение:
.
Следовательно, ответ правильный.
- Решить систему уравнений матричным методом самостоятельно, а затем посмотреть решение
- Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы
- Пример решения системы линейных уравнений с помощью метода обратной матрицы
- Решение систем линейных алгебраических уравнений с помощью обратной матрицы.
- 💥 Видео
Решить систему уравнений матричным методом самостоятельно, а затем посмотреть решение
Пример 3. Решить матричным методом систему линейных уравнений:
Видео:Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать
Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы
В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.
Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.
Найти решение системы n линейных уравнений с n неизвестными:
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n
Матричный вид записи: А × X = B
где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.
X = x 1 x 2 ⋮ x n — столбец неизвестных,
B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.
Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :
A — 1 × A × X = A — 1 × B .
Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .
Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .
В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.
Видео:Решение системы уравнений методом обратной матрицы - bezbotvyСкачать
Пример решения системы линейных уравнений с помощью метода обратной матрицы
Решаем СЛАУ методом обратной матрицы:
2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2
- Записываем систему в виде матричного уравнения А X = B , где
А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .
- Выражаем из этого уравнения X :
- Находим определитель матрицы А :
d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25
d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.
- Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :
А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,
А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,
А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,
А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,
А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,
А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,
А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,
А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,
А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .
- Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :
А * = — 6 7 5 17 1 — 10 — 10 — 5 0
- Записываем обратную матрицу согласно формуле:
A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,
- Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:
X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1
Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1
Видео:Решение системы уравнений методом обратной матрицы.Скачать
Решение систем линейных алгебраических уравнений с помощью обратной матрицы.
Решение систем линейных алгебраических уравнений (СЛАУ) с помощью обратной матрицы (иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ. Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:
- Записать три матрицы: матрицу системы $A$, матрицу неизвестных $X$, матрицу свободных членов $B$.
- Найти обратную матрицу $A^$.
- Используя равенство $X=A^cdot B$ получить решение заданной СЛАУ.
Любую СЛАУ можно записать в матричной форме как $Acdot X=B$, где $A$ – матрица системы, $B$ – матрица свободных членов, $X$ – матрица неизвестных. Пусть матрица $A^$ существует. Умножим обе части равенства $Acdot X=B$ на матрицу $A^$ слева:
Так как $A^cdot A=E$ ($E$ – единичная матрица), то записанное выше равенство станет таким:
Так как $Ecdot X=X$, то:
Перед переходом к чтению примеров рекомендую ознакомиться с методами вычисления обратных матриц, изложенными здесь.
Решить СЛАУ $ left < begin& -5x_1+7x_2=29;\ & 9x_1+8x_2=-11. end right.$ с помощью обратной матрицы.
Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.
Найдём обратную матрицу к матрице системы, т.е. вычислим $A^$. В примере №2 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^$:
Теперь подставим все три матрицы ($X$, $A^$, $B$) в равенство $X=A^cdot B$. Затем выполним умножение матриц в правой части данного равенства.
$$ left(begin x_1\ x_2 endright)= -fraccdotleft(begin 8 & -7\ -9 & -5endright)cdot left(begin 29\ -11 endright)=\ =-fraccdot left(begin 8cdot 29+(-7)cdot (-11)\ -9cdot 29+(-5)cdot (-11) endright)= -fraccdot left(begin 309\ -206 endright)=left(begin -3\ 2endright). $$
Итак, мы получили равенство $left(begin x_1\ x_2 endright)=left(begin -3\ 2endright)$. Из этого равенства имеем: $x_1=-3$, $x_2=2$.
Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.
Теперь настал черёд найти обратную матрицу к матрице системы, т.е. найти $A^$. В примере №3 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^$:
$$ A^=fraccdot left( begin 6 & -5 & 1 \ 8 & 2 & -16 \ -12 & -3 & 37end right). $$
Теперь подставим все три матрицы ($X$, $A^$, $B$) в равенство $X=A^cdot B$, после чего выполним умножение матриц в правой части данного равенства.
$$ left(begin x_1\ x_2 \ x_3 endright)= fraccdot left( begin 6 & -5 & 1 \ 8 & 2 & -16 \ -12 & -3 & 37end right)cdot left(begin -1\0\6endright)=\ =fraccdot left(begin 6cdot(-1)+(-5)cdot 0+1cdot 6 \ 8cdot (-1)+2cdot 0+(-16)cdot 6 \ -12cdot (-1)+(-3)cdot 0+37cdot 6 endright)=fraccdot left(begin 0\-104\234endright)=left(begin 0\-4\9endright) $$
Итак, мы получили равенство $left(begin x_1\ x_2 \ x_3 endright)=left(begin 0\-4\9endright)$. Из этого равенства имеем: $x_1=0$, $x_2=-4$, $x_3=9$.
Естественно, что решение систем линейных уравнений с помощью обратной матрицы без применения специальных программ вроде Mathcad возможно лишь при сравнительно небольшом количестве переменных. Если СЛАУ содержит четыре и более переменных, то гораздо удобнее в таком случае применить метод Гаусса или метод Гаусса-Жордана.
Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
💥 Видео
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Матричный метод решения систем линейных уравнений (метод обратной матрицы)Скачать
Матричный метод решения систем уравненийСкачать
9. Метод обратной матрицы для решения систем линейных уравнений / матричный методСкачать
Обратная матрицаСкачать
Линейная алгебра, 7 урок, СЛАУ. Матричный методСкачать
Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать
Метод обратной матрицы решения систем линейных уравненийСкачать
Линейная алгебра, 5 урок, Обратная матрицаСкачать
Excel метод обратной матрицыСкачать
Решение матричных уравненийСкачать
Как находить обратную матрицу - bezbotvyСкачать
Обратная матрица (2 способа нахождения)Скачать
11. Решение систем линейных уравнений методом обратной матрицы (матричный метод)Скачать
8. Обратная матрицаСкачать
Решение системы уравнений методом Крамера.Скачать
Математика без Ху!ни. Метод Гаусса.Скачать